Combining Texts

All the ideas for 'fragments/reports', 'Mathematics is Megethology' and 'Which Logic is the Right Logic?'

expand these ideas     |    start again     |     specify just one area for these texts


29 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematics reduces to set theory, which reduces, with some mereology, to the singleton function [Lewis]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
We can accept the null set, but not a null class, a class lacking members [Lewis]
The null set plays the role of last resort, for class abstracts and for existence [Lewis]
The null set is not a little speck of sheer nothingness, a black hole in Reality [Lewis]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
What on earth is the relationship between a singleton and an element? [Lewis]
Are all singletons exact intrinsic duplicates? [Lewis]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice now seems acceptable and obvious (if it is meaningful) [Tharp]
4. Formal Logic / G. Formal Mereology / 1. Mereology
Megethology is the result of adding plural quantification to mereology [Lewis]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is either for demonstration, or for characterizing structures [Tharp]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Elementary logic is complete, but cannot capture mathematics [Tharp]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic isn't provable, but will express set-theory and classic problems [Tharp]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / b. Basic connectives
In sentential logic there is a simple proof that all truth functions can be reduced to 'not' and 'and' [Tharp]
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
We can use mereology to simulate quantification over relations [Lewis]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
The main quantifiers extend 'and' and 'or' to infinite domains [Tharp]
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
There are at least five unorthodox quantifiers that could be used [Tharp]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Skolem mistakenly inferred that Cantor's conceptions were illusory [Tharp]
The Löwenheim-Skolem property is a limitation (e.g. can't say there are uncountably many reals) [Tharp]
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness would seem to be an essential requirement of a proof procedure [Tharp]
5. Theory of Logic / K. Features of Logics / 4. Completeness
Completeness and compactness together give axiomatizability [Tharp]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
If completeness fails there is no algorithm to list the valid formulas [Tharp]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Compactness is important for major theories which have infinitely many axioms [Tharp]
Compactness blocks infinite expansion, and admits non-standard models [Tharp]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A complete logic has an effective enumeration of the valid formulas [Tharp]
Effective enumeration might be proved but not specified, so it won't guarantee knowledge [Tharp]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mathematics is generalisations about singleton functions [Lewis]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
We don't need 'abstract structures' to have structural truths about successor functions [Lewis]
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
I say that absolutely any things can have a mereological fusion [Lewis]
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]