Combining Texts

All the ideas for 'After Finitude', 'Possible Worlds and Necessary A Posteriori' and 'Beginning Logic'

expand these ideas     |    start again     |     specify just one area for these texts


81 ideas

1. Philosophy / B. History of Ideas / 5. Later European Thought
Since Kant we think we can only access 'correlations' between thinking and being [Meillassoux]
The Copernican Revolution decentres the Earth, but also decentres thinking from reality [Meillassoux]
1. Philosophy / B. History of Ideas / 6. Twentieth Century Thought
In Kant the thing-in-itself is unknowable, but for us it has become unthinkable [Meillassoux]
1. Philosophy / G. Scientific Philosophy / 3. Scientism
Since Kant, philosophers have claimed to understand science better than scientists do [Meillassoux]
2. Reason / A. Nature of Reason / 5. Objectivity
Since Kant, objectivity is defined not by the object, but by the statement's potential universality [Meillassoux]
2. Reason / B. Laws of Thought / 2. Sufficient Reason
If we insist on Sufficient Reason the world will always be a mystery to us [Meillassoux]
2. Reason / B. Laws of Thought / 3. Non-Contradiction
Non-contradiction is unjustified, so it only reveals a fact about thinking, not about reality? [Meillassoux]
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
'Contradictory' propositions always differ in truth-value [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / a. Symbols of PL
That proposition that both P and Q is their 'conjunction', written P∧Q [Lemmon]
The sign |- may be read as 'therefore' [Lemmon]
If A and B are 'interderivable' from one another we may write A -||- B [Lemmon]
We write the conditional 'if P (antecedent) then Q (consequent)' as P→Q [Lemmon]
We write the 'negation' of P (not-P) as ¬ [Lemmon]
That proposition that either P or Q is their 'disjunction', written P∨Q [Lemmon]
We write 'P if and only if Q' as P↔Q; it is also P iff Q, or (P→Q)∧(Q→P) [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'well-formed formula' follows the rules for variables, ¬, →, ∧, ∨, and ↔ [Lemmon]
A 'substitution-instance' is a wff formed by consistent replacing variables with wffs [Lemmon]
A wff is 'inconsistent' if all assignments to variables result in the value F [Lemmon]
Two propositions are 'equivalent' if they mirror one another's truth-value [Lemmon]
The 'scope' of a connective is the connective, the linked formulae, and the brackets [Lemmon]
A 'theorem' is the conclusion of a provable sequent with zero assumptions [Lemmon]
A 'implies' B if B is true whenever A is true (so that A→B is tautologous) [Lemmon]
'Subcontrary' propositions are never both false, so that A∨B is a tautology [Lemmon]
'Contrary' propositions are never both true, so that ¬(A∧B) is a tautology [Lemmon]
A wff is a 'tautology' if all assignments to variables result in the value T [Lemmon]
A wff is 'contingent' if produces at least one T and at least one F [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
DN: Given A, we may derive ¬¬A [Lemmon]
∧I: Given A and B, we may derive A∧B [Lemmon]
MPP: Given A and A→B, we may derive B [Lemmon]
∧E: Given A∧B, we may derive either A or B separately [Lemmon]
∨E: Derive C from A∨B, if C can be derived both from A and from B [Lemmon]
MTT: Given ¬B and A→B, we derive ¬A [Lemmon]
A: we may assume any proposition at any stage [Lemmon]
∨I: Given either A or B separately, we may derive A∨B [Lemmon]
RAA: If assuming A will prove B∧¬B, then derive ¬A [Lemmon]
CP: Given a proof of B from A as assumption, we may derive A→B [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Modus ponendo tollens' (MPT) says P, ¬(P ∧ Q) |- ¬Q [Lemmon]
We can change conjunctions into negated conditionals with P→Q -||- ¬(P → ¬Q) [Lemmon]
The Distributive Laws can rearrange a pair of conjunctions or disjunctions [Lemmon]
De Morgan's Laws make negated conjunctions/disjunctions into non-negated disjunctions/conjunctions [Lemmon]
We can change conditionals into disjunctions with P→Q -||- ¬P ∨ Q [Lemmon]
We can change conditionals into negated conjunctions with P→Q -||- ¬(P ∧ ¬Q) [Lemmon]
'Modus tollendo ponens' (MTP) says ¬P, P ∨ Q |- Q [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Truth-tables are good for showing invalidity [Lemmon]
A truth-table test is entirely mechanical, but this won't work for more complex logic [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 4. Soundness of PL
If any of the nine rules of propositional logic are applied to tautologies, the result is a tautology [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 5. Completeness of PL
Propositional logic is complete, since all of its tautologous sequents are derivable [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / a. Symbols of PC
Write '(∀x)(...)' to mean 'take any x: then...', and '(∃x)(...)' to mean 'there is an x such that....' [Lemmon]
'Gm' says m has property G, and 'Pmn' says m has relation P to n [Lemmon]
The 'symbols' are bracket, connective, term, variable, predicate letter, reverse-E [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / b. Terminology of PC
Our notation uses 'predicate-letters' (for 'properties'), 'variables', 'proper names', 'connectives' and 'quantifiers' [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / c. Derivations rules of PC
Universal Elimination (UE) lets us infer that an object has F, from all things having F [Lemmon]
Predicate logic uses propositional connectives and variables, plus new introduction and elimination rules [Lemmon]
Universal elimination if you start with the universal, introduction if you want to end with it [Lemmon]
With finite named objects, we can generalise with &-Intro, but otherwise we need ∀-Intro [Lemmon]
UE all-to-one; UI one-to-all; EI arbitrary-to-one; EE proof-to-one [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
If there is a finite domain and all objects have names, complex conjunctions can replace universal quantifiers [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
'Some Frenchmen are generous' is rendered by (∃x)(Fx→Gx), and not with the conditional → [Lemmon]
4. Formal Logic / E. Nonclassical Logics / 7. Paraconsistency
Paraconsistent logics are to prevent computers crashing when data conflicts [Meillassoux]
We can allow contradictions in thought, but not inconsistency [Meillassoux]
Paraconsistent logic is about statements, not about contradictions in reality [Meillassoux]
5. Theory of Logic / B. Logical Consequence / 8. Material Implication
The paradoxes of material implication are P |- Q → P, and ¬P |- P → Q [Lemmon]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
What is mathematically conceivable is absolutely possible [Meillassoux]
7. Existence / A. Nature of Existence / 1. Nature of Existence
The absolute is the impossibility of there being a necessary existent [Meillassoux]
7. Existence / A. Nature of Existence / 5. Reason for Existence
It is necessarily contingent that there is one thing rather than another - so something must exist [Meillassoux]
7. Existence / A. Nature of Existence / 6. Criterion for Existence
We must give up the modern criterion of existence, which is a correlation between thought and being [Meillassoux]
9. Objects / D. Essence of Objects / 9. Essence and Properties
How do we tell a table's being contingently plastic from its being essentially plastic? [Jackson]
An x is essentially F if it is F in every possible world in which it appears [Jackson]
9. Objects / D. Essence of Objects / 15. Against Essentialism
Quine may have conflated de re and de dicto essentialism, but there is a real epistemological problem [Jackson]
10. Modality / B. Possibility / 5. Contingency
Possible non-being which must be realised is 'precariousness'; absolute contingency might never not-be [Meillassoux]
10. Modality / B. Possibility / 7. Chance
The idea of chance relies on unalterable physical laws [Meillassoux]
10. Modality / D. Knowledge of Modality / 3. A Posteriori Necessary
How can you show the necessity of an a posteriori necessity, if it might turn out to be false? [Jackson]
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / b. Transcendental idealism
Unlike speculative idealism, transcendental idealism assumes the mind is embodied [Meillassoux]
12. Knowledge Sources / B. Perception / 2. Qualities in Perception / c. Primary qualities
The aspects of objects that can be mathematical allow it to have objective properties [Meillassoux]
14. Science / B. Scientific Theories / 1. Scientific Theory
How can we mathematically describe a world that lacks humans? [Meillassoux]
14. Science / C. Induction / 3. Limits of Induction
Hume's question is whether experimental science will still be valid tomorrow [Meillassoux]
16. Persons / B. Nature of the Self / 4. Presupposition of Self
The transcendental subject is not an entity, but a set of conditions making science possible [Meillassoux]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / b. Scientific necessity
If the laws of nature are contingent, shouldn't we already have noticed it? [Meillassoux]
Why are contingent laws of nature stable? [Meillassoux]
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
The ontological proof of a necessary God ensures a reality external to the mind [Meillassoux]
28. God / C. Attitudes to God / 5. Atheism
Now that the absolute is unthinkable, even atheism is just another religious belief (though nihilist) [Meillassoux]