Combining Texts

All the ideas for 'After Finitude', 'First-Order Modal Logic' and 'The Sign of Four'

expand these ideas     |    start again     |     specify just one area for these texts


70 ideas

1. Philosophy / B. History of Ideas / 5. Later European Thought
Since Kant we think we can only access 'correlations' between thinking and being [Meillassoux]
The Copernican Revolution decentres the Earth, but also decentres thinking from reality [Meillassoux]
1. Philosophy / B. History of Ideas / 6. Twentieth Century Thought
In Kant the thing-in-itself is unknowable, but for us it has become unthinkable [Meillassoux]
1. Philosophy / G. Scientific Philosophy / 3. Scientism
Since Kant, philosophers have claimed to understand science better than scientists do [Meillassoux]
2. Reason / A. Nature of Reason / 5. Objectivity
Since Kant, objectivity is defined not by the object, but by the statement's potential universality [Meillassoux]
2. Reason / B. Laws of Thought / 2. Sufficient Reason
If we insist on Sufficient Reason the world will always be a mystery to us [Meillassoux]
2. Reason / B. Laws of Thought / 3. Non-Contradiction
Non-contradiction is unjustified, so it only reveals a fact about thinking, not about reality? [Meillassoux]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Each line of a truth table is a model [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / a. Symbols of ML
Modal logic adds □ (necessarily) and ◊ (possibly) to classical logic [Fitting/Mendelsohn]
We let 'R' be the accessibility relation: xRy is read 'y is accessible from x' [Fitting/Mendelsohn]
The symbol ||- is the 'forcing' relation; 'Γ ||- P' means that P is true in world Γ [Fitting/Mendelsohn]
The prefix σ names a possible world, and σ.n names a world accessible from that one [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / b. Terminology of ML
Modern modal logic introduces 'accessibility', saying xRy means 'y is accessible from x' [Fitting/Mendelsohn]
A 'model' is a frame plus specification of propositions true at worlds, written < G,R,||- > [Fitting/Mendelsohn]
A 'constant' domain is the same for all worlds; 'varying' domains can be entirely separate [Fitting/Mendelsohn]
A 'frame' is a set G of possible worlds, with an accessibility relation R, written < G,R > [Fitting/Mendelsohn]
Accessibility relations can be 'reflexive' (self-referring), 'transitive' (carries over), or 'symmetric' (mutual) [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / c. Derivation rules of ML
Conj: a) if σ X∧Y then σ X and σ Y b) if σ ¬(X∧Y) then σ ¬X or σ ¬Y [Fitting/Mendelsohn]
Bicon: a)if σ(X↔Y) then σ(X→Y) and σ(Y→X) b) [not biconditional, one or other fails] [Fitting/Mendelsohn]
Disj: a) if σ ¬(X∨Y) then σ ¬X and σ ¬Y b) if σ X∨Y then σ X or σ Y [Fitting/Mendelsohn]
Universal: a) if σ ¬◊X then σ.m ¬X b) if σ □X then σ.m X [m exists] [Fitting/Mendelsohn]
Existential: a) if σ ◊X then σ.n X b) if σ ¬□X then σ.n ¬X [n is new] [Fitting/Mendelsohn]
Negation: if σ ¬¬X then σ X [Fitting/Mendelsohn]
Implic: a) if σ ¬(X→Y) then σ X and σ ¬Y b) if σ X→Y then σ ¬X or σ Y [Fitting/Mendelsohn]
T reflexive: a) if σ □X then σ X b) if σ ¬◊X then σ ¬X [Fitting/Mendelsohn]
4r rev-trans: a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [n occurs] [Fitting/Mendelsohn]
4 transitive: a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [n occurs] [Fitting/Mendelsohn]
B symmetric: a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [n occurs] [Fitting/Mendelsohn]
D serial: a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X [Fitting/Mendelsohn]
S5: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X [Fitting/Mendelsohn]
If a proposition is possibly true in a world, it is true in some world accessible from that world [Fitting/Mendelsohn]
If a proposition is necessarily true in a world, it is true in all worlds accessible from that world [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
The system K has no accessibility conditions [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
□P → P is not valid in D (Deontic Logic), since an obligatory action may be not performed [Fitting/Mendelsohn]
The system D has the 'serial' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / d. System T
The system T has the 'reflexive' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / e. System K4
The system K4 has the 'transitive' condition on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / f. System B
The system B has the 'reflexive' and 'symmetric' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
The system S4 has the 'reflexive' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
System S5 has the 'reflexive', 'symmetric' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Modality affects content, because P→◊P is valid, but ◊P→P isn't [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 5. Epistemic Logic
Read epistemic box as 'a knows/believes P' and diamond as 'for all a knows/believes, P' [Fitting/Mendelsohn]
In epistemic logic knowers are logically omniscient, so they know that they know [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
F: will sometime, P: was sometime, G: will always, H: was always [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The Barcan corresponds to anti-monotonicity, and the Converse to monotonicity [Fitting/Mendelsohn]
The Barcan says nothing comes into existence; the Converse says nothing ceases; the pair imply stability [Fitting/Mendelsohn]
4. Formal Logic / E. Nonclassical Logics / 7. Paraconsistency
Paraconsistent logics are to prevent computers crashing when data conflicts [Meillassoux]
We can allow contradictions in thought, but not inconsistency [Meillassoux]
Paraconsistent logic is about statements, not about contradictions in reality [Meillassoux]
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
'Predicate abstraction' abstracts predicates from formulae, giving scope for constants and functions [Fitting/Mendelsohn]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
What is mathematically conceivable is absolutely possible [Meillassoux]
7. Existence / A. Nature of Existence / 1. Nature of Existence
The absolute is the impossibility of there being a necessary existent [Meillassoux]
7. Existence / A. Nature of Existence / 5. Reason for Existence
It is necessarily contingent that there is one thing rather than another - so something must exist [Meillassoux]
7. Existence / A. Nature of Existence / 6. Criterion for Existence
We must give up the modern criterion of existence, which is a correlation between thought and being [Meillassoux]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Indiscernibility of Identicals has been a big problem for modal logic [Fitting/Mendelsohn]
10. Modality / B. Possibility / 5. Contingency
Possible non-being which must be realised is 'precariousness'; absolute contingency might never not-be [Meillassoux]
10. Modality / B. Possibility / 7. Chance
The idea of chance relies on unalterable physical laws [Meillassoux]
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
□ must be sensitive as to whether it picks out an object by essential or by contingent properties [Fitting/Mendelsohn]
Objects retain their possible properties across worlds, so a bundle theory of them seems best [Fitting/Mendelsohn]
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
Counterpart relations are neither symmetric nor transitive, so there is no logic of equality for them [Fitting/Mendelsohn]
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / b. Transcendental idealism
Unlike speculative idealism, transcendental idealism assumes the mind is embodied [Meillassoux]
12. Knowledge Sources / B. Perception / 2. Qualities in Perception / c. Primary qualities
The aspects of objects that can be mathematical allow it to have objective properties [Meillassoux]
14. Science / B. Scientific Theories / 1. Scientific Theory
How can we mathematically describe a world that lacks humans? [Meillassoux]
14. Science / C. Induction / 1. Induction
If you eliminate the impossible, the truth will remain, even if it is weird [Conan Doyle]
14. Science / C. Induction / 3. Limits of Induction
Hume's question is whether experimental science will still be valid tomorrow [Meillassoux]
16. Persons / B. Nature of the Self / 4. Presupposition of Self
The transcendental subject is not an entity, but a set of conditions making science possible [Meillassoux]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / b. Scientific necessity
If the laws of nature are contingent, shouldn't we already have noticed it? [Meillassoux]
Why are contingent laws of nature stable? [Meillassoux]
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
The ontological proof of a necessary God ensures a reality external to the mind [Meillassoux]
28. God / C. Attitudes to God / 5. Atheism
Now that the absolute is unthinkable, even atheism is just another religious belief (though nihilist) [Meillassoux]