Combining Texts

All the ideas for 'After Finitude', 'Introduction - Ontology' and 'A Tour through Mathematical Logic'

expand these ideas     |    start again     |     specify just one area for these texts


49 ideas

1. Philosophy / B. History of Ideas / 5. Later European Thought
Since Kant we think we can only access 'correlations' between thinking and being [Meillassoux]
The Copernican Revolution decentres the Earth, but also decentres thinking from reality [Meillassoux]
1. Philosophy / B. History of Ideas / 6. Twentieth Century Thought
In Kant the thing-in-itself is unknowable, but for us it has become unthinkable [Meillassoux]
1. Philosophy / G. Scientific Philosophy / 3. Scientism
Since Kant, philosophers have claimed to understand science better than scientists do [Meillassoux]
2. Reason / A. Nature of Reason / 5. Objectivity
Since Kant, objectivity is defined not by the object, but by the statement's potential universality [Meillassoux]
2. Reason / B. Laws of Thought / 2. Sufficient Reason
If we insist on Sufficient Reason the world will always be a mystery to us [Meillassoux]
2. Reason / B. Laws of Thought / 3. Non-Contradiction
Non-contradiction is unjustified, so it only reveals a fact about thinking, not about reality? [Meillassoux]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'tautology' must include connectives [Wolf,RS]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Deduction Theorem: T∪{P}|-Q, then T|-(P→Q), which justifies Conditional Proof [Wolf,RS]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
Universal Generalization: If we prove P(x) with no special assumptions, we can conclude ∀xP(x) [Wolf,RS]
Universal Specification: ∀xP(x) implies P(t). True for all? Then true for an instance [Wolf,RS]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
Existential Generalization (or 'proof by example'): if we can say P(t), then we can say something is P [Wolf,RS]
4. Formal Logic / E. Nonclassical Logics / 7. Paraconsistency
We can allow contradictions in thought, but not inconsistency [Meillassoux]
Paraconsistent logics are to prevent computers crashing when data conflicts [Meillassoux]
Paraconsistent logic is about statements, not about contradictions in reality [Meillassoux]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / e. Axiom of the Empty Set IV
Empty Set: ∃x∀y ¬(y∈x). The unique empty set exists [Wolf,RS]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension Axiom: if a collection is clearly specified, it is a set [Wolf,RS]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
In first-order logic syntactic and semantic consequence (|- and |=) nicely coincide [Wolf,RS]
First-order logic is weakly complete (valid sentences are provable); we can't prove every sentence or its negation [Wolf,RS]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory reveals the structures of mathematics [Wolf,RS]
Model theory 'structures' have a 'universe', some 'relations', some 'functions', and some 'constants' [Wolf,RS]
Model theory uses sets to show that mathematical deduction fits mathematical truth [Wolf,RS]
First-order model theory rests on completeness, compactness, and the Löwenheim-Skolem-Tarski theorem [Wolf,RS]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An 'isomorphism' is a bijection that preserves all structural components [Wolf,RS]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The LST Theorem is a serious limitation of first-order logic [Wolf,RS]
5. Theory of Logic / K. Features of Logics / 4. Completeness
If a theory is complete, only a more powerful language can strengthen it [Wolf,RS]
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Most deductive logic (unlike ordinary reasoning) is 'monotonic' - we don't retract after new givens [Wolf,RS]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
An ordinal is an equivalence class of well-orderings, or a transitive set whose members are transitive [Wolf,RS]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
What is mathematically conceivable is absolutely possible [Meillassoux]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Modern mathematics has unified all of its objects within set theory [Wolf,RS]
7. Existence / A. Nature of Existence / 1. Nature of Existence
The absolute is the impossibility of there being a necessary existent [Meillassoux]
7. Existence / A. Nature of Existence / 5. Reason for Existence
It is necessarily contingent that there is one thing rather than another - so something must exist [Meillassoux]
7. Existence / A. Nature of Existence / 6. Criterion for Existence
We must give up the modern criterion of existence, which is a correlation between thought and being [Meillassoux]
7. Existence / C. Structure of Existence / 3. Levels of Reality
Biologists see many organic levels, 'abstract' if seen from below, 'structural' if seen from above [Lycan]
9. Objects / F. Identity among Objects / 6. Identity between Objects
'Lightning is electric discharge' and 'Phosphorus is Venus' are synthetic a posteriori identities [Lycan]
10. Modality / B. Possibility / 5. Contingency
Possible non-being which must be realised is 'precariousness'; absolute contingency might never not-be [Meillassoux]
10. Modality / B. Possibility / 7. Chance
The idea of chance relies on unalterable physical laws [Meillassoux]
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / b. Transcendental idealism
Unlike speculative idealism, transcendental idealism assumes the mind is embodied [Meillassoux]
12. Knowledge Sources / B. Perception / 2. Qualities in Perception / c. Primary qualities
The aspects of objects that can be mathematical allow it to have objective properties [Meillassoux]
14. Science / B. Scientific Theories / 1. Scientific Theory
How can we mathematically describe a world that lacks humans? [Meillassoux]
14. Science / C. Induction / 3. Limits of Induction
Hume's question is whether experimental science will still be valid tomorrow [Meillassoux]
16. Persons / B. Nature of the Self / 4. Presupposition of Self
The transcendental subject is not an entity, but a set of conditions making science possible [Meillassoux]
17. Mind and Body / C. Functionalism / 2. Machine Functionalism
Functionalism has three linked levels: physical, functional, and mental [Lycan]
17. Mind and Body / C. Functionalism / 5. Teleological Functionalism
A mental state is a functional realisation of a brain state when it serves the purpose of the organism [Lycan]
26. Natural Theory / A. Speculations on Nature / 2. Natural Purpose / c. Purpose denied
People are trying to explain biological teleology in naturalistic causal terms [Lycan]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / b. Scientific necessity
If the laws of nature are contingent, shouldn't we already have noticed it? [Meillassoux]
Why are contingent laws of nature stable? [Meillassoux]
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
The ontological proof of a necessary God ensures a reality external to the mind [Meillassoux]
28. God / C. Attitudes to God / 5. Atheism
Now that the absolute is unthinkable, even atheism is just another religious belief (though nihilist) [Meillassoux]