Combining Texts

All the ideas for 'Universal Prescriptivism', 'Semantic Relationism' and 'First-Order Modal Logic'

expand these ideas     |    start again     |     specify just one area for these texts


72 ideas

4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Each line of a truth table is a model [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / a. Symbols of ML
Modal logic adds □ (necessarily) and ◊ (possibly) to classical logic [Fitting/Mendelsohn]
We let 'R' be the accessibility relation: xRy is read 'y is accessible from x' [Fitting/Mendelsohn]
The symbol ||- is the 'forcing' relation; 'Γ ||- P' means that P is true in world Γ [Fitting/Mendelsohn]
The prefix σ names a possible world, and σ.n names a world accessible from that one [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / b. Terminology of ML
Modern modal logic introduces 'accessibility', saying xRy means 'y is accessible from x' [Fitting/Mendelsohn]
A 'model' is a frame plus specification of propositions true at worlds, written < G,R,||- > [Fitting/Mendelsohn]
A 'constant' domain is the same for all worlds; 'varying' domains can be entirely separate [Fitting/Mendelsohn]
A 'frame' is a set G of possible worlds, with an accessibility relation R, written < G,R > [Fitting/Mendelsohn]
Accessibility relations can be 'reflexive' (self-referring), 'transitive' (carries over), or 'symmetric' (mutual) [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / c. Derivation rules of ML
Conj: a) if σ X∧Y then σ X and σ Y b) if σ ¬(X∧Y) then σ ¬X or σ ¬Y [Fitting/Mendelsohn]
Bicon: a)if σ(X↔Y) then σ(X→Y) and σ(Y→X) b) [not biconditional, one or other fails] [Fitting/Mendelsohn]
Disj: a) if σ ¬(X∨Y) then σ ¬X and σ ¬Y b) if σ X∨Y then σ X or σ Y [Fitting/Mendelsohn]
Universal: a) if σ ¬◊X then σ.m ¬X b) if σ □X then σ.m X [m exists] [Fitting/Mendelsohn]
Existential: a) if σ ◊X then σ.n X b) if σ ¬□X then σ.n ¬X [n is new] [Fitting/Mendelsohn]
Negation: if σ ¬¬X then σ X [Fitting/Mendelsohn]
If a proposition is possibly true in a world, it is true in some world accessible from that world [Fitting/Mendelsohn]
If a proposition is necessarily true in a world, it is true in all worlds accessible from that world [Fitting/Mendelsohn]
Implic: a) if σ ¬(X→Y) then σ X and σ ¬Y b) if σ X→Y then σ ¬X or σ Y [Fitting/Mendelsohn]
T reflexive: a) if σ □X then σ X b) if σ ¬◊X then σ ¬X [Fitting/Mendelsohn]
4r rev-trans: a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [n occurs] [Fitting/Mendelsohn]
4 transitive: a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [n occurs] [Fitting/Mendelsohn]
B symmetric: a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [n occurs] [Fitting/Mendelsohn]
D serial: a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X [Fitting/Mendelsohn]
S5: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
The system K has no accessibility conditions [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
□P → P is not valid in D (Deontic Logic), since an obligatory action may be not performed [Fitting/Mendelsohn]
The system D has the 'serial' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / d. System T
The system T has the 'reflexive' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / e. System K4
The system K4 has the 'transitive' condition on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / f. System B
The system B has the 'reflexive' and 'symmetric' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
The system S4 has the 'reflexive' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
System S5 has the 'reflexive', 'symmetric' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Modality affects content, because P→◊P is valid, but ◊P→P isn't [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 5. Epistemic Logic
Read epistemic box as 'a knows/believes P' and diamond as 'for all a knows/believes, P' [Fitting/Mendelsohn]
In epistemic logic knowers are logically omniscient, so they know that they know [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
F: will sometime, P: was sometime, G: will always, H: was always [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The Barcan corresponds to anti-monotonicity, and the Converse to monotonicity [Fitting/Mendelsohn]
The Barcan says nothing comes into existence; the Converse says nothing ceases; the pair imply stability [Fitting/Mendelsohn]
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
The usual Tarskian interpretation of variables is to specify their range of values [Fine,K]
Variables can be viewed as special terms - functions taking assignments into individuals [Fine,K]
It seemed that Frege gave the syntax for variables, and Tarski the semantics, and that was that [Fine,K]
In separate expressions variables seem identical in role, but in the same expression they aren't [Fine,K]
The 'algebraic' account of variables reduces quantification to the algebra of its component parts [Fine,K]
'Instantial' accounts of variables say we grasp arbitrary instances from their use in quantification [Fine,K]
5. Theory of Logic / F. Referring in Logic / 1. Naming / b. Names as descriptive
Cicero/Cicero and Cicero/Tully may differ in relationship, despite being semantically the same [Fine,K]
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
'Predicate abstraction' abstracts predicates from formulae, giving scope for constants and functions [Fitting/Mendelsohn]
9. Objects / F. Identity among Objects / 1. Concept of Identity
I can only represent individuals as the same if I do not already represent them as the same [Fine,K]
9. Objects / F. Identity among Objects / 5. Self-Identity
If Cicero=Tully refers to the man twice, then surely Cicero=Cicero does as well? [Fine,K]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Indiscernibility of Identicals has been a big problem for modal logic [Fitting/Mendelsohn]
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
□ must be sensitive as to whether it picks out an object by essential or by contingent properties [Fitting/Mendelsohn]
Objects retain their possible properties across worlds, so a bundle theory of them seems best [Fitting/Mendelsohn]
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
Counterpart relations are neither symmetric nor transitive, so there is no logic of equality for them [Fitting/Mendelsohn]
18. Thought / B. Mechanics of Thought / 5. Mental Files
Mental files are devices for keeping track of basic coordination of objects [Fine,K]
18. Thought / C. Content / 1. Content
You cannot determine the full content from a thought's intrinsic character, as relations are involved [Fine,K]
19. Language / C. Assigning Meanings / 2. Semantics
The standard aim of semantics is to assign a semantic value to each expression [Fine,K]
That two utterances say the same thing may not be intrinsic to them, but involve their relationships [Fine,K]
The two main theories are Holism (which is inferential), and Representational (which is atomistic) [Fine,K]
We should pursue semantic facts as stated by truths in theories (and not put the theories first!) [Fine,K]
Referentialist semantics has objects for names, properties for predicates, and propositions for connectives [Fine,K]
Fregeans approach the world through sense, Referentialists through reference [Fine,K]
19. Language / C. Assigning Meanings / 9. Indexical Semantics
I take indexicals such as 'this' and 'that' to be linked to some associated demonstration [Fine,K]
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / c. Ethical intuitionism
How can intuitionists distinguish universal convictions from local cultural ones? [Hare]
You can't use intuitions to decide which intuitions you should cultivate [Hare]
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / h. Expressivism
Emotivists mistakenly think all disagreements are about facts, and so there are no moral reasons [Hare]
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / i. Prescriptivism
An 'ought' statement implies universal application [Hare]
If morality is just a natural or intuitive description, that leads to relativism [Hare]
Descriptivism say ethical meaning is just truth-conditions; prescriptivism adds an evaluation [Hare]
If there can be contradictory prescriptions, then reasoning must be involved [Hare]
Prescriptivism sees 'ought' statements as imperatives which are universalisable [Hare]
Prescriptivism implies a commitment, but descriptivism doesn't [Hare]
23. Ethics / D. Deontological Ethics / 3. Universalisability
Moral judgements must invoke some sort of principle [Hare]