Combining Texts

All the ideas for 'A Realistic Theory of Categories', 'Understanding the Infinite' and 'Ontology'

expand these ideas     |    start again     |     specify just one area for these texts


56 ideas

4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
The modal logic of C.I.Lewis was only interpreted by Kripke and Hintikka in the 1960s [Jacquette]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic describes inferences between sentences expressing possible properties of objects [Jacquette]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
5. Theory of Logic / C. Ontology of Logic / 2. Platonism in Logic
Logic is not just about signs, because it relates to states of affairs, objects, properties and truth-values [Jacquette]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
On Russell's analysis, the sentence "The winged horse has wings" comes out as false [Jacquette]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / d. Russell's paradox
Can a Barber shave all and only those persons who do not shave themselves? [Jacquette]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
7. Existence / A. Nature of Existence / 3. Being / a. Nature of Being
To grasp being, we must say why something exists, and why there is one world [Jacquette]
7. Existence / A. Nature of Existence / 5. Reason for Existence
Being is maximal consistency [Jacquette]
Existence is completeness and consistency [Jacquette]
7. Existence / D. Theories of Reality / 1. Ontologies
Ontology is the same as the conceptual foundations of logic [Jacquette]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / a. Ontological commitment
Ontology must include the minimum requirements for our semantics [Jacquette]
7. Existence / E. Categories / 3. Proposed Categories
Chisholm divides things into contingent and necessary, and then individuals, states and non-states [Chisholm, by Westerhoff]
Logic is based either on separate objects and properties, or objects as combinations of properties [Jacquette]
Reduce states-of-affairs to object-property combinations, and possible worlds to states-of-affairs [Jacquette]
8. Modes of Existence / B. Properties / 11. Properties as Sets
If classes can't be eliminated, and they are property combinations, then properties (universals) can't be either [Jacquette]
9. Objects / A. Existence of Objects / 1. Physical Objects
An object is a predication subject, distinguished by a distinctive combination of properties [Jacquette]
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
Numbers, sets and propositions are abstract particulars; properties, qualities and relations are universals [Jacquette]
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
The actual world is a consistent combination of states, made of consistent property combinations [Jacquette]
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / a. Nature of possible worlds
The actual world is a maximally consistent combination of actual states of affairs [Jacquette]
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / c. Worlds as propositions
Do proposition-structures not associated with the actual world deserve to be called worlds? [Jacquette]
We must experience the 'actual' world, which is defined by maximally consistent propositions [Jacquette]
15. Nature of Minds / B. Features of Minds / 5. Qualia / c. Explaining qualia
If qualia supervene on intentional states, then intentional states are explanatorily fundamental [Jacquette]
17. Mind and Body / E. Mind as Physical / 2. Reduction of Mind
Reduction of intentionality involving nonexistent objects is impossible, as reduction must be to what is actual [Jacquette]
19. Language / D. Propositions / 1. Propositions
The extreme views on propositions are Frege's Platonism and Quine's extreme nominalism [Jacquette]