Combining Texts

All the ideas for 'Laws of Nature', 'Two-Dimensional Semantics' and 'Understanding'

expand these ideas     |    start again     |     specify just one area for these texts


49 ideas

4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
The Square of Opposition has two contradictory pairs, one contrary pair, and one sub-contrary pair [Harré]
5. Theory of Logic / G. Quantification / 1. Quantification
Traditional quantifiers combine ordinary language generality and ontology assumptions [Harré]
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
Some quantifiers, such as 'any', rule out any notion of order within their range [Harré]
8. Modes of Existence / B. Properties / 4. Intrinsic Properties
Scientific properties are not observed qualities, but the dispositions which create them [Harré]
10. Modality / A. Necessity / 3. Types of Necessity
Superficial necessity is true in all worlds; deep necessity is thus true, no matter which world is actual [Schroeter]
10. Modality / A. Necessity / 7. Natural Necessity
Laws of nature remain the same through any conditions, if the underlying mechanisms are unchanged [Harré]
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / b. Conceivable but impossible
Contradictory claims about a necessary god both seem apriori coherent [Schroeter]
11. Knowledge Aims / A. Knowledge / 2. Understanding
Unlike knowledge, you can achieve understanding through luck [Grimm]
'Grasping' a structure seems to be modal, because we must anticipate its behaviour [Grimm]
You may have 'weak' understanding, if by luck you can answer a set of 'why questions' [Grimm]
12. Knowledge Sources / A. A Priori Knowledge / 8. A Priori as Analytic
2D semantics gives us apriori knowledge of our own meanings [Schroeter]
14. Science / A. Basis of Science / 1. Observation
In physical sciences particular observations are ordered, but in biology only the classes are ordered [Harré]
14. Science / A. Basis of Science / 3. Experiment
Reports of experiments eliminate the experimenter, and present results as the behaviour of nature [Harré]
14. Science / A. Basis of Science / 5. Anomalies
We can save laws from counter-instances by treating the latter as analytic definitions [Harré]
14. Science / B. Scientific Theories / 1. Scientific Theory
Since there are three different dimensions for generalising laws, no one system of logic can cover them [Harré]
14. Science / C. Induction / 5. Paradoxes of Induction / a. Grue problem
The grue problem shows that natural kinds are central to science [Harré]
'Grue' introduces a new causal hypothesis - that emeralds can change colour [Harré]
14. Science / C. Induction / 5. Paradoxes of Induction / b. Raven paradox
It is because ravens are birds that their species and their colour might be connected [Harré]
Non-black non-ravens just aren't part of the presuppositions of 'all ravens are black' [Harré]
14. Science / D. Explanation / 2. Types of Explanation / i. Explanations by mechanism
The necessity of Newton's First Law derives from the nature of material things, not from a mechanism [Harré]
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Idealisation idealises all of a thing's properties, but abstraction leaves some of them out [Harré]
18. Thought / C. Content / 5. Twin Earth
Your view of water depends on whether you start from the actual Earth or its counterfactual Twin [Schroeter]
18. Thought / C. Content / 7. Narrow Content
Rationalists say knowing an expression is identifying its extension using an internal cognitive state [Schroeter]
19. Language / A. Nature of Meaning / 1. Meaning
Internalist meaning is about understanding; externalist meaning is about embedding in a situation [Schroeter]
19. Language / C. Assigning Meanings / 2. Semantics
Semantic theory assigns meanings to expressions, and metasemantics explains how this works [Schroeter]
19. Language / C. Assigning Meanings / 4. Compositionality
Semantic theories show how truth of sentences depends on rules for interpreting and joining their parts [Schroeter]
19. Language / C. Assigning Meanings / 7. Extensional Semantics
Simple semantics assigns extensions to names and to predicates [Schroeter]
'Federer' and 'best tennis player' can't mean the same, despite having the same extension [Schroeter]
19. Language / C. Assigning Meanings / 8. Possible Worlds Semantics
Possible worlds semantics uses 'intensions' - functions which assign extensions at each world [Schroeter]
Possible worlds make 'I' and that person's name synonymous, but they have different meanings [Schroeter]
Possible worlds semantics implies a constitutive connection between meanings and modal claims [Schroeter]
In the possible worlds account all necessary truths are same (because they all map to the True) [Schroeter]
19. Language / C. Assigning Meanings / 10. Two-Dimensional Semantics
Array worlds along the horizontal, and contexts (world,person,time) along the vertical [Schroeter]
If we introduce 'actually' into modal talk, we need possible worlds twice to express this [Schroeter]
Do we know apriori how we refer to names and natural kinds, but their modal profiles only a posteriori? [Schroeter]
2D fans defend it for conceptual analysis, for meaning, and for internalist reference [Schroeter]
2D semantics can't respond to contingent apriori claims, since there is no single proposition involved [Schroeter]
26. Natural Theory / B. Natural Kinds / 1. Natural Kinds
Science rests on the principle that nature is a hierarchy of natural kinds [Harré]
26. Natural Theory / D. Laws of Nature / 1. Laws of Nature
Classification is just as important as laws in natural science [Harré]
Newton's First Law cannot be demonstrated experimentally, as that needs absence of external forces [Harré]
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
Laws can come from data, from theory, from imagination and concepts, or from procedures [Harré]
Are laws of nature about events, or types and universals, or dispositions, or all three? [Harré]
Are laws about what has or might happen, or do they also cover all the possibilities? [Harré]
26. Natural Theory / D. Laws of Nature / 5. Laws from Universals
Maybe laws of nature are just relations between properties? [Harré]
26. Natural Theory / D. Laws of Nature / 7. Strictness of Laws
We take it that only necessary happenings could be laws [Harré]
Laws describe abstract idealisations, not the actual mess of nature [Harré]
Must laws of nature be universal, or could they be local? [Harré]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / c. Essence and laws
Laws of nature state necessary connections of things, events and properties, based on models of mechanisms [Harré]
26. Natural Theory / D. Laws of Nature / 9. Counterfactual Claims
In counterfactuals we keep substances constant, and imagine new situations for them [Harré]