Combining Texts

All the ideas for 'Abstract Objects: a Case Study', 'Axiomatic Theories of Truth (2013 ver)' and 'Intro to Naming,Necessity and Natural Kinds'

expand these ideas     |    start again     |     specify just one area for these texts


18 ideas

2. Reason / D. Definition / 1. Definitions
The new view is that "water" is a name, and has no definition [Schwartz,SP]
3. Truth / A. Truth Problems / 2. Defining Truth
If we define truth, we can eliminate it [Halbach/Leigh]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
If a language cannot name all objects, then satisfaction must be used, instead of unary truth [Halbach/Leigh]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
Semantic theories need a powerful metalanguage, typically including set theory [Halbach/Leigh]
3. Truth / F. Semantic Truth / 2. Semantic Truth
The T-sentences are deductively weak, and also not deductively conservative [Halbach/Leigh]
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
A natural theory of truth plays the role of reflection principles, establishing arithmetic's soundness [Halbach/Leigh]
If deflationary truth is not explanatory, truth axioms should be 'conservative', proving nothing new [Halbach/Leigh]
3. Truth / G. Axiomatic Truth / 2. FS Truth Axioms
The FS axioms use classical logical, but are not fully consistent [Halbach/Leigh]
3. Truth / G. Axiomatic Truth / 3. KF Truth Axioms
KF is formulated in classical logic, but describes non-classical truth, which allows truth-value gluts [Halbach/Leigh]
5. Theory of Logic / F. Referring in Logic / 1. Naming / b. Names as descriptive
We refer to Thales successfully by name, even if all descriptions of him are false [Schwartz,SP]
The traditional theory of names says some of the descriptions must be correct [Schwartz,SP]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Mathematics is both necessary and a priori because it really consists of logical truths [Yablo]
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Putting numbers in quantifiable position (rather than many quantifiers) makes expression easier [Yablo]
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
Concrete objects have few essential properties, but properties of abstractions are mostly essential [Yablo]
We are thought to know concreta a posteriori, and many abstracta a priori [Yablo]
8. Modes of Existence / B. Properties / 12. Denial of Properties
We can reduce properties to true formulas [Halbach/Leigh]
8. Modes of Existence / E. Nominalism / 1. Nominalism / c. Nominalism about abstracta
Nominalists can reduce theories of properties or sets to harmless axiomatic truth theories [Halbach/Leigh]
18. Thought / C. Content / 8. Intension
The intension of "lemon" is the conjunction of properties associated with it [Schwartz,SP]