Combining Texts

All the ideas for 'Thinking About Mathematics', 'Abstract Objects' and 'Understanding the Infinite'

expand these ideas     |    start again     |     specify just one area for these texts


71 ideas

1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
Questions about objects are questions about certain non-vacuous singular terms [Hale]
2. Reason / D. Definition / 12. Paraphrase
An expression is a genuine singular term if it resists elimination by paraphrase [Hale]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
5. Theory of Logic / F. Referring in Logic / 1. Naming / d. Singular terms
We should decide whether singular terms are genuine by their usage [Hale]
Often the same singular term does not ensure reliable inference [Hale]
Plenty of clear examples have singular terms with no ontological commitment [Hale]
If singular terms can't be language-neutral, then we face a relativity about their objects [Hale]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
Intuitionism rejects set-theory to found mathematics [Lavine]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
The abstract/concrete distinction is based on what is perceivable, causal and located [Hale]
Colours and points seem to be both concrete and abstract [Hale]
The abstract/concrete distinction is in the relations in the identity-criteria of object-names [Hale]
Token-letters and token-words are concrete objects, type-letters and type-words abstract [Hale]
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / b. Levels of abstraction
There is a hierarchy of abstraction, based on steps taken by equivalence relations [Hale]
8. Modes of Existence / D. Universals / 1. Universals
If F can't have location, there is no problem of things having F in different locations [Hale]
It is doubtful if one entity, a universal, can be picked out by both predicates and abstract nouns [Hale]
Realists take universals to be the referrents of both adjectives and of nouns [Hale]
8. Modes of Existence / E. Nominalism / 1. Nominalism / c. Nominalism about abstracta
Objections to Frege: abstracta are unknowable, non-independent, unstatable, unindividuated [Hale]
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Shapes and directions are of something, but games and musical compositions are not [Hale]
Many abstract objects, such as chess, seem non-spatial, but are not atemporal [Hale]
If the mental is non-spatial but temporal, then it must be classified as abstract [Hale]
Being abstract is based on a relation between things which are spatially separated [Hale]
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
The modern Fregean use of the term 'object' is much broader than the ordinary usage [Hale]
9. Objects / A. Existence of Objects / 2. Abstract Objects / d. Problems with abstracta
We can't believe in a 'whereabouts' because we ask 'what kind of object is it?' [Hale]
9. Objects / F. Identity among Objects / 1. Concept of Identity
The relations featured in criteria of identity are always equivalence relations [Hale]
9. Objects / F. Identity among Objects / 3. Relative Identity
We sometimes apply identity without having a real criterion [Hale]
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Rationalism tries to apply mathematical methodology to all of knowledge [Shapiro]