Combining Texts

All the ideas for 'Higher-Order Logic', 'A Puzzle about Belief' and 'Remarks on axiomatised set theory'

expand these ideas     |    start again     |     specify just one area for these texts


17 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Axiomatising set theory makes it all relative [Skolem]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice is controversial, but it could be replaced [Shapiro]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is Complete, and Compact, with the Löwenheim-Skolem Theorems [Shapiro]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Some say that second-order logic is mathematics, not logic [Shapiro]
If the aim of logic is to codify inferences, second-order logic is useless [Shapiro]
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Logical consequence can be defined in terms of the logical terminology [Shapiro]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order variables also range over properties, sets, relations or functions [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
If a 1st-order proposition is satisfied, it is satisfied in a denumerably infinite domain [Skolem]
Up Löwenheim-Skolem: if natural numbers satisfy wffs, then an infinite domain satisfies them [Shapiro]
The Löwenheim-Skolem Theorems fail for second-order languages with standard semantics [Shapiro]
The Löwenheim-Skolem theorem seems to be a defect of first-order logic [Shapiro]
Downward Löwenheim-Skolem: if there's an infinite model, there is a countable model [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Integers and induction are clear as foundations, but set-theory axioms certainly aren't [Skolem]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order logic has the expressive power for mathematics, but an unworkable model theory [Shapiro]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Mathematician want performable operations, not propositions about objects [Skolem]
8. Modes of Existence / B. Properties / 11. Properties as Sets
Logicians use 'property' and 'set' interchangeably, with little hanging on it [Shapiro]
18. Thought / B. Mechanics of Thought / 5. Mental Files
Puzzled Pierre has two mental files about the same object [Recanati on Kripke]