Combining Texts

All the ideas for 'Axiomatic Theories of Truth (2005 ver)', 'Matter and Memory' and 'The Theory of Objects'

expand these ideas     |    start again     |     specify just one area for these texts


18 ideas

3. Truth / A. Truth Problems / 2. Defining Truth
Truth definitions don't produce a good theory, because they go beyond your current language [Halbach]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
In semantic theories of truth, the predicate is in an object-language, and the definition in a metalanguage [Halbach]
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
Instead of a truth definition, add a primitive truth predicate, and axioms for how it works [Halbach]
Should axiomatic truth be 'conservative' - not proving anything apart from implications of the axioms? [Halbach]
If truth is defined it can be eliminated, whereas axiomatic truth has various commitments [Halbach]
Axiomatic theories of truth need a weak logical framework, and not a strong metatheory [Halbach]
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Deflationists say truth merely serves to express infinite conjunctions [Halbach]
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
So-called 'free logic' operates without existence assumptions [Meinong, by George/Van Evra]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
To prove the consistency of set theory, we must go beyond set theory [Halbach]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
We can use truth instead of ontologically loaded second-order comprehension assumptions about properties [Halbach]
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
Instead of saying x has a property, we can say a formula is true of x - as long as we have 'true' [Halbach]
7. Existence / A. Nature of Existence / 3. Being / c. Becoming
Bergson was a rallying point, because he emphasised becomings and multiplicities [Bergson, by Deleuze]
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
There can be impossible and contradictory objects, if they can have properties [Meinong, by Friend]
9. Objects / A. Existence of Objects / 3. Objects in Thought
There are objects of which it is true that there are no such objects [Meinong]
Meinong says an object need not exist, but must only have properties [Meinong, by Friend]
9. Objects / A. Existence of Objects / 4. Impossible objects
Meinong said all objects of thought (even self-contradictions) have some sort of being [Meinong, by Lycan]
The objects of knowledge are far more numerous than objects which exist [Meinong]
12. Knowledge Sources / E. Direct Knowledge / 4. Memory
Bergson showed that memory is not after the event, but coexists with it [Bergson, by Deleuze]