Combining Texts

All the ideas for 'Axiomatic Theories of Truth (2005 ver)', 'Inexpressible Properties and Propositions' and 'Naturalism in Mathematics'

expand these ideas     |    start again     |     specify just one area for these texts


40 ideas

3. Truth / A. Truth Problems / 2. Defining Truth
Truth definitions don't produce a good theory, because they go beyond your current language [Halbach]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
In semantic theories of truth, the predicate is in an object-language, and the definition in a metalanguage [Halbach]
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
Instead of a truth definition, add a primitive truth predicate, and axioms for how it works [Halbach]
Should axiomatic truth be 'conservative' - not proving anything apart from implications of the axioms? [Halbach]
If truth is defined it can be eliminated, whereas axiomatic truth has various commitments [Halbach]
Axiomatic theories of truth need a weak logical framework, and not a strong metatheory [Halbach]
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Deflationists say truth merely serves to express infinite conjunctions [Halbach]
3. Truth / H. Deflationary Truth / 3. Minimalist Truth
Instances of minimal truth miss out propositions inexpressible in current English [Hofweber]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
To prove the consistency of set theory, we must go beyond set theory [Halbach]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
'Forcing' can produce new models of ZFC from old models [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
A Large Cardinal Axiom would assert ever-increasing stages in the hierarchy [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Axiom of Infinity: completed infinite collections can be treated mathematically [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
The Axiom of Foundation says every set exists at a level in the set hierarchy [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Axiom of Reducibility: propositional functions are extensionally predicative [Maddy]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
We can use truth instead of ontologically loaded second-order comprehension assumptions about properties [Halbach]
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
'Propositional functions' are propositions with a variable as subject or predicate [Maddy]
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
Instead of saying x has a property, we can say a formula is true of x - as long as we have 'true' [Halbach]
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Quantification can't all be substitutional; some reference is obviously to objects [Hofweber]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor and Dedekind brought completed infinities into mathematics [Maddy]
Completed infinities resulted from giving foundations to calculus [Maddy]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
For any cardinal there is always a larger one (so there is no set of all sets) [Maddy]
An 'inaccessible' cardinal cannot be reached by union sets or power sets [Maddy]
Infinity has degrees, and large cardinals are the heart of set theory [Maddy]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
Theorems about limits could only be proved once the real numbers were understood [Maddy]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
The extension of concepts is not important to me [Maddy]
In the ZFC hierarchy it is impossible to form Frege's set of all three-element sets [Maddy]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege solves the Caesar problem by explicitly defining each number [Maddy]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Mathematics rests on the logic of proofs, and on the set theoretic axioms [Maddy]
Unified set theory gives a final court of appeal for mathematics [Maddy]
Set theory brings mathematics into one arena, where interrelations become clearer [Maddy]
Identifying geometric points with real numbers revealed the power of set theory [Maddy]
Making set theory foundational to mathematics leads to very fruitful axioms [Maddy]
The line of rationals has gaps, but set theory provided an ordered continuum [Maddy]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Maybe applications of continuum mathematics are all idealisations [Maddy]
Scientists posit as few entities as possible, but set theorist posit as many as possible [Maddy]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
We can get arithmetic directly from HP; Law V was used to get HP from the definition of number [Maddy]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
The theoretical indispensability of atoms did not at first convince scientists that they were real [Maddy]
8. Modes of Existence / B. Properties / 1. Nature of Properties
Since properties have properties, there can be a typed or a type-free theory of them [Hofweber]
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Science idealises the earth's surface, the oceans, continuities, and liquids [Maddy]
19. Language / F. Communication / 6. Interpreting Language / a. Translation
Holism says language can't be translated; the expressibility hypothesis says everything can [Hofweber]