Combining Texts

All the ideas for 'Probabilistic Causality', 'Understanding the Infinite' and 'The Semantic Conception of Truth'

expand these ideas     |    start again     |     specify just one area for these texts


58 ideas

1. Philosophy / E. Nature of Metaphysics / 5. Metaphysics beyond Science
Some say metaphysics is a highly generalised empirical study of objects [Tarski]
1. Philosophy / F. Analytic Philosophy / 1. Nature of Analysis
Disputes that fail to use precise scientific terminology are all meaningless [Tarski]
2. Reason / D. Definition / 1. Definitions
For a definition we need the words or concepts used, the rules, and the structure of the language [Tarski]
3. Truth / A. Truth Problems / 2. Defining Truth
Definitions of truth should not introduce a new version of the concept, but capture the old one [Tarski]
A definition of truth should be materially adequate and formally correct [Tarski]
A rigorous definition of truth is only possible in an exactly specified language [Tarski]
We may eventually need to split the word 'true' into several less ambiguous terms [Tarski]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
It is convenient to attach 'true' to sentences, and hence the language must be specified [Tarski]
In the classical concept of truth, 'snow is white' is true if snow is white [Tarski]
Scheme (T) is not a definition of truth [Tarski]
Each interpreted T-sentence is a partial definition of truth; the whole definition is their conjunction [Tarski]
Use 'true' so that all T-sentences can be asserted, and the definition will then be 'adequate' [Tarski]
We don't give conditions for asserting 'snow is white'; just that assertion implies 'snow is white' is true [Tarski]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
The best truth definition involves other semantic notions, like satisfaction (relating terms and objects) [Tarski]
Specify satisfaction for simple sentences, then compounds; true sentences are satisfied by all objects [Tarski]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
We can't use a semantically closed language, or ditch our logic, so a meta-language is needed [Tarski]
The metalanguage must contain the object language, logic, and defined semantics [Tarski]
3. Truth / F. Semantic Truth / 2. Semantic Truth
If listing equivalences is a reduction of truth, witchcraft is just a list of witch-victim pairs [Field,H on Tarski]
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
We need an undefined term 'true' in the meta-language, specified by axioms [Tarski]
3. Truth / H. Deflationary Truth / 1. Redundant Truth
Truth can't be eliminated from universal claims, or from particular unspecified claims [Tarski]
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Semantics is a very modest discipline which solves no real problems [Tarski]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Truth tables give prior conditions for logic, but are outside the system, and not definitions [Tarski]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
The truth definition proves semantic contradiction and excluded middle laws (not the logic laws) [Tarski]
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The Liar makes us assert a false sentence, so it must be taken seriously [Tarski]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
26. Natural Theory / C. Causation / 8. Particular Causation / e. Probabilistic causation
Probabilistic causal concepts are widely used in everyday life and in science [Salmon]