Combining Texts

All the ideas for 'The Roots of Reference', 'Beginning Logic' and 'The Principles of Mathematics'

expand these ideas     |    start again     |     specify just one area for these texts


145 ideas

1. Philosophy / F. Analytic Philosophy / 1. Nature of Analysis
Analysis gives us nothing but the truth - but never the whole truth [Russell]
1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
The study of grammar is underestimated in philosophy [Russell]
1. Philosophy / F. Analytic Philosophy / 7. Limitations of Analysis
Analysis falsifies, if when the parts are broken down they are not equivalent to their sum [Russell]
2. Reason / D. Definition / 13. Against Definition
Definition by analysis into constituents is useless, because it neglects the whole [Russell]
In mathematics definitions are superfluous, as they name classes, and it all reduces to primitives [Russell]
2. Reason / F. Fallacies / 2. Infinite Regress
Infinite regresses have propositions made of propositions etc, with the key term reappearing [Russell]
2. Reason / F. Fallacies / 8. Category Mistake / a. Category mistakes
As well as a truth value, propositions have a range of significance for their variables [Russell]
3. Truth / A. Truth Problems / 5. Truth Bearers
What is true or false is not mental, and is best called 'propositions' [Russell]
3. Truth / H. Deflationary Truth / 1. Redundant Truth
"The death of Caesar is true" is not the same proposition as "Caesar died" [Russell]
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
'Contradictory' propositions always differ in truth-value [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / a. Symbols of PL
We write the conditional 'if P (antecedent) then Q (consequent)' as P→Q [Lemmon]
That proposition that both P and Q is their 'conjunction', written P∧Q [Lemmon]
If A and B are 'interderivable' from one another we may write A -||- B [Lemmon]
The sign |- may be read as 'therefore' [Lemmon]
That proposition that either P or Q is their 'disjunction', written P∨Q [Lemmon]
We write the 'negation' of P (not-P) as ¬ [Lemmon]
We write 'P if and only if Q' as P↔Q; it is also P iff Q, or (P→Q)∧(Q→P) [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'well-formed formula' follows the rules for variables, ¬, →, ∧, ∨, and ↔ [Lemmon]
The 'scope' of a connective is the connective, the linked formulae, and the brackets [Lemmon]
A 'theorem' is the conclusion of a provable sequent with zero assumptions [Lemmon]
A wff is a 'tautology' if all assignments to variables result in the value T [Lemmon]
A wff is 'inconsistent' if all assignments to variables result in the value F [Lemmon]
'Contrary' propositions are never both true, so that ¬(A∧B) is a tautology [Lemmon]
Two propositions are 'equivalent' if they mirror one another's truth-value [Lemmon]
A 'substitution-instance' is a wff formed by consistent replacing variables with wffs [Lemmon]
A wff is 'contingent' if produces at least one T and at least one F [Lemmon]
A 'implies' B if B is true whenever A is true (so that A→B is tautologous) [Lemmon]
'Subcontrary' propositions are never both false, so that A∨B is a tautology [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
MTT: Given ¬B and A→B, we derive ¬A [Lemmon]
DN: Given A, we may derive ¬¬A [Lemmon]
CP: Given a proof of B from A as assumption, we may derive A→B [Lemmon]
∧I: Given A and B, we may derive A∧B [Lemmon]
MPP: Given A and A→B, we may derive B [Lemmon]
A: we may assume any proposition at any stage [Lemmon]
∧E: Given A∧B, we may derive either A or B separately [Lemmon]
∨I: Given either A or B separately, we may derive A∨B [Lemmon]
RAA: If assuming A will prove B∧¬B, then derive ¬A [Lemmon]
∨E: Derive C from A∨B, if C can be derived both from A and from B [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Modus tollendo ponens' (MTP) says ¬P, P ∨ Q |- Q [Lemmon]
'Modus ponendo tollens' (MPT) says P, ¬(P ∧ Q) |- ¬Q [Lemmon]
We can change conjunctions into negated conditionals with P→Q -||- ¬(P → ¬Q) [Lemmon]
The Distributive Laws can rearrange a pair of conjunctions or disjunctions [Lemmon]
De Morgan's Laws make negated conjunctions/disjunctions into non-negated disjunctions/conjunctions [Lemmon]
We can change conditionals into disjunctions with P→Q -||- ¬P ∨ Q [Lemmon]
We can change conditionals into negated conjunctions with P→Q -||- ¬(P ∧ ¬Q) [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Truth-tables are good for showing invalidity [Lemmon]
A truth-table test is entirely mechanical, but this won't work for more complex logic [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 4. Soundness of PL
If any of the nine rules of propositional logic are applied to tautologies, the result is a tautology [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 5. Completeness of PL
Propositional logic is complete, since all of its tautologous sequents are derivable [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / a. Symbols of PC
'Gm' says m has property G, and 'Pmn' says m has relation P to n [Lemmon]
The 'symbols' are bracket, connective, term, variable, predicate letter, reverse-E [Lemmon]
Write '(∀x)(...)' to mean 'take any x: then...', and '(∃x)(...)' to mean 'there is an x such that....' [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / b. Terminology of PC
Our notation uses 'predicate-letters' (for 'properties'), 'variables', 'proper names', 'connectives' and 'quantifiers' [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / c. Derivations rules of PC
Universal Elimination (UE) lets us infer that an object has F, from all things having F [Lemmon]
Predicate logic uses propositional connectives and variables, plus new introduction and elimination rules [Lemmon]
Universal elimination if you start with the universal, introduction if you want to end with it [Lemmon]
With finite named objects, we can generalise with &-Intro, but otherwise we need ∀-Intro [Lemmon]
UE all-to-one; UI one-to-all; EI arbitrary-to-one; EE proof-to-one [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
If there is a finite domain and all objects have names, complex conjunctions can replace universal quantifiers [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
'Some Frenchmen are generous' is rendered by (∃x)(Fx→Gx), and not with the conditional → [Lemmon]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The null class is a fiction [Russell]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Russell invented the naïve set theory usually attributed to Cantor [Russell, by Lavine]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
Order rests on 'between' and 'separation' [Russell]
Order depends on transitive asymmetrical relations [Russell]
4. Formal Logic / G. Formal Mereology / 1. Mereology
The part-whole relation is ultimate and indefinable [Russell]
5. Theory of Logic / B. Logical Consequence / 8. Material Implication
It would be circular to use 'if' and 'then' to define material implication [Russell]
Implication cannot be defined [Russell]
The paradoxes of material implication are P |- Q → P, and ¬P |- P → Q [Lemmon]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
The only classes are things, predicates and relations [Russell]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / b. Basic connectives
There seem to be eight or nine logical constants [Russell]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / c. not
Negations are not just reversals of truth-value, since that can happen without negation [Wittgenstein on Russell]
5. Theory of Logic / E. Structures of Logic / 3. Constants in Logic
Constants are absolutely definite and unambiguous [Russell]
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
Variables don't stand alone, but exist as parts of propositional functions [Russell]
5. Theory of Logic / G. Quantification / 1. Quantification
'Any' is better than 'all' where infinite classes are concerned [Russell]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / a. Achilles paradox
The Achilles Paradox concerns the one-one correlation of infinite classes [Russell]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
Russell discovered the paradox suggested by Burali-Forti's work [Russell, by Lavine]
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Pure geometry is deductive, and neutral over what exists [Russell]
In geometry, Kant and idealists aimed at the certainty of the premisses [Russell]
In geometry, empiricists aimed at premisses consistent with experience [Russell]
Geometry throws no light on the nature of actual space [Russell]
Two points have a line joining them (descriptive), a distance (metrical), and a whole line (projective) [Russell, by PG]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Russell's approach had to treat real 5/8 as different from rational 5/8 [Russell, by Dummett]
Ordinals result from likeness among relations, as cardinals from similarity among classes [Russell]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Some claim priority for the ordinals over cardinals, but there is no logical priority between them [Russell]
Ordinals presuppose two relations, where cardinals only presuppose one [Russell]
Properties of numbers don't rely on progressions, so cardinals may be more basic [Russell]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Transfinite ordinals don't obey commutativity, so their arithmetic is quite different from basic arithmetic [Russell]
Ordinals are types of series of terms in a row, rather than the 'nth' instance [Russell]
Ordinals are defined through mathematical induction [Russell]
For Cantor ordinals are types of order, not numbers [Russell]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
We aren't sure if one cardinal number is always bigger than another [Russell]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers are a class of rational numbers (and so not really numbers at all) [Russell]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Some quantities can't be measured, and some non-quantities are measurable [Russell]
Quantity is not part of mathematics, where it is replaced by order [Russell]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting explains none of the real problems about the foundations of arithmetic [Russell]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / e. Counting by correlation
We can define one-to-one without mentioning unity [Russell]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
We do not currently know whether, of two infinite numbers, one must be greater than the other [Russell]
There are cardinal and ordinal theories of infinity (while continuity is entirely ordinal) [Russell]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / b. Mark of the infinite
Infinite numbers are distinguished by disobeying induction, and the part equalling the whole [Russell]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
ω names the whole series, or the generating relation of the series of ordinal numbers [Russell]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
You can't get a new transfinite cardinal from an old one just by adding finite numbers to it [Russell]
For every transfinite cardinal there is an infinite collection of transfinite ordinals [Russell]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Axiom of Archimedes: a finite multiple of a lesser magnitude can always exceed a greater [Russell]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Russell tried to replace Peano's Postulates with the simple idea of 'class' [Russell, by Monk]
Dedekind failed to distinguish the numbers from other progressions [Shapiro on Russell]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Denying mathematical induction gave us the transfinite [Russell]
Finite numbers, unlike infinite numbers, obey mathematical induction [Russell]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
Numbers were once defined on the basis of 1, but neglected infinities and + [Russell]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
Numbers are properties of classes [Russell]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Ordinals can't be defined just by progression; they have intrinsic qualities [Russell]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Mathematics doesn't care whether its entities exist [Russell]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Pure mathematics is the class of propositions of the form 'p implies q' [Russell]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
For 'x is a u' to be meaningful, u must be one range of individuals (or 'type') higher than x [Russell]
In 'x is a u', x and u must be of different types, so 'x is an x' is generally meaningless [Russell, by Magidor]
7. Existence / A. Nature of Existence / 3. Being / a. Nature of Being
Being is what belongs to every possible object of thought [Russell]
7. Existence / A. Nature of Existence / 3. Being / b. Being and existence
Many things have being (as topics of propositions), but may not have actual existence [Russell]
7. Existence / A. Nature of Existence / 6. Criterion for Existence
What exists has causal relations, but non-existent things may also have them [Russell]
7. Existence / E. Categories / 3. Proposed Categories
Four classes of terms: instants, points, terms at instants only, and terms at instants and points [Russell]
8. Modes of Existence / A. Relations / 1. Nature of Relations
Philosophers of logic and maths insisted that a vocabulary of relations was essential [Russell, by Heil]
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
'Reflexiveness' holds between a term and itself, and cannot be inferred from symmetry and transitiveness [Russell]
8. Modes of Existence / A. Relations / 4. Formal Relations / b. Equivalence relation
Symmetrical and transitive relations are formally like equality [Russell]
8. Modes of Existence / C. Powers and Dispositions / 3. Powers as Derived
Dispositions are physical states of mechanism; when known, these replace the old disposition term [Quine]
9. Objects / A. Existence of Objects / 3. Objects in Thought
I call an object of thought a 'term'. This is a wide concept implying unity and existence. [Russell]
9. Objects / A. Existence of Objects / 5. Simples
Unities are only in propositions or concepts, and nothing that exists has unity [Russell]
9. Objects / B. Unity of Objects / 1. Unifying an Object / a. Intrinsic unification
The only unities are simples, or wholes composed of parts [Russell]
9. Objects / B. Unity of Objects / 1. Unifying an Object / b. Unifying aggregates
A set has some sort of unity, but not enough to be a 'whole' [Russell]
9. Objects / D. Essence of Objects / 15. Against Essentialism
Change is obscured by substance, a thing's nature, subject-predicate form, and by essences [Russell]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
Terms are identical if they belong to all the same classes [Russell]
It at least makes sense to say two objects have all their properties in common [Wittgenstein on Russell]
10. Modality / B. Possibility / 9. Counterfactuals
It makes no sense to say that a true proposition could have been false [Russell]
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Abstraction principles identify a common property, which is some third term with the right relation [Russell]
The principle of Abstraction says a symmetrical, transitive relation analyses into an identity [Russell]
A certain type of property occurs if and only if there is an equivalence relation [Russell]
19. Language / D. Propositions / 1. Propositions
Proposition contain entities indicated by words, rather than the words themselves [Russell]
19. Language / D. Propositions / 3. Concrete Propositions
If propositions are facts, then false and true propositions are indistinguishable [Davidson on Russell]
19. Language / D. Propositions / 5. Unity of Propositions
A proposition is a unity, and analysis destroys it [Russell]
Russell said the proposition must explain its own unity - or else objective truth is impossible [Russell, by Davidson]
26. Natural Theory / C. Causation / 7. Eliminating causation
Moments and points seem to imply other moments and points, but don't cause them [Russell]
We can drop 'cause', and just make inferences between facts [Russell]
26. Natural Theory / D. Laws of Nature / 11. Against Laws of Nature
The laws of motion and gravitation are just parts of the definition of a kind of matter [Russell]
27. Natural Reality / A. Classical Physics / 1. Mechanics / a. Explaining movement
Occupying a place and change are prior to motion, so motion is just occupying places at continuous times [Russell]
27. Natural Reality / A. Classical Physics / 1. Mechanics / c. Forces
Force is supposed to cause acceleration, but acceleration is a mathematical fiction [Russell]
27. Natural Reality / C. Space / 3. Points in Space
Space is the extension of 'point', and aggregates of points seem necessary for geometry [Russell]
27. Natural Reality / D. Time / 3. Parts of Time / b. Instants
Mathematicians don't distinguish between instants of time and points on a line [Russell]
27. Natural Reality / E. Cosmology / 1. Cosmology
The 'universe' can mean what exists now, what always has or will exist [Russell]