Combining Texts

All the ideas for 'The Evolution of Logic', 'On the Introduction of Transfinite Numbers' and 'Principia Mathematica'

expand these ideas     |    start again     |     specify just one area for these texts


76 ideas

1. Philosophy / C. History of Philosophy / 4. Later European Philosophy / c. Eighteenth century philosophy
We are all post-Kantians, because he set the current agenda for philosophy [Hart,WD]
1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / d. Philosophy as puzzles
The problems are the monuments of philosophy [Hart,WD]
1. Philosophy / F. Analytic Philosophy / 6. Logical Analysis
To study abstract problems, some knowledge of set theory is essential [Hart,WD]
3. Truth / C. Correspondence Truth / 2. Correspondence to Facts
Tarski showed how we could have a correspondence theory of truth, without using 'facts' [Hart,WD]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Truth for sentences is satisfaction of formulae; for sentences, either all sequences satisfy it (true) or none do [Hart,WD]
3. Truth / F. Semantic Truth / 2. Semantic Truth
A first-order language has an infinity of T-sentences, which cannot add up to a definition of truth [Hart,WD]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Conditional Proof: infer a conditional, if the consequent can be deduced from the antecedent [Hart,WD]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
The best known axiomatization of PL is Whitehead/Russell, with four axioms and two rules [Russell/Whitehead, by Hughes/Cresswell]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
∃y... is read as 'There exists an individual, call it y, such that...', and not 'There exists a y such that...' [Hart,WD]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Set theory articulates the concept of order (through relations) [Hart,WD]
Nowadays ZFC and NBG are the set theories; types are dead, and NF is only useful for the whole universe [Hart,WD]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
∈ relates across layers, while ⊆ relates within layers [Hart,WD]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Without the empty set we could not form a∩b without checking that a and b meet [Hart,WD]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
In the modern view, foundation is the heart of the way to do set theory [Hart,WD]
Foundation Axiom: an nonempty set has a member disjoint from it [Hart,WD]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
We can choose from finite and evident sets, but not from infinite opaque ones [Hart,WD]
With the Axiom of Choice every set can be well-ordered [Hart,WD]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
If we accept that V=L, it seems to settle all the open questions of set theory [Hart,WD]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Russell saw Reducibility as legitimate for reducing classes to logic [Linsky,B on Russell/Whitehead]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naďve logical sets
Naďve set theory has trouble with comprehension, the claim that every predicate has an extension [Hart,WD]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception may not be necessary, and may have fixed points or infinitely descending chains [Hart,WD]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A 'partial ordering' is irreflexive and transitive; the sets are ordered, but not the subsets [Hart,WD]
A partial ordering becomes 'total' if any two members of its field are comparable [Hart,WD]
'Well-ordering' must have a least member, so it does the natural numbers but not the integers [Hart,WD]
Von Neumann defines α<β as α∈β [Hart,WD]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Russell denies extensional sets, because the null can't be a collection, and the singleton is just its element [Russell/Whitehead, by Shapiro]
We regard classes as mere symbolic or linguistic conveniences [Russell/Whitehead]
Maybe sets should be rethought in terms of the even more basic categories [Hart,WD]
5. Theory of Logic / B. Logical Consequence / 7. Strict Implication
Lewis's 'strict implication' preserved Russell's confusion of 'if...then' with implication [Quine on Russell/Whitehead]
Russell's implication means that random sentences imply one another [Lewis,CI on Russell/Whitehead]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Russell unusually saw logic as 'interpreted' (though very general, and neutral) [Russell/Whitehead, by Linsky,B]
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
In 'Principia' a new abstract theory of relations appeared, and was applied [Russell/Whitehead, by Gödel]
5. Theory of Logic / G. Quantification / 3. Objectual Quantification
The universal quantifier can't really mean 'all', because there is no universal set [Hart,WD]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Modern model theory begins with the proof of Los's Conjecture in 1962 [Hart,WD]
Model theory studies how set theory can model sets of sentences [Hart,WD]
Model theory is mostly confined to first-order theories [Hart,WD]
Models are ways the world might be from a first-order point of view [Hart,WD]
5. Theory of Logic / K. Features of Logics / 6. Compactness
First-order logic is 'compact': consequences of a set are consequences of a finite subset [Hart,WD]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox: we succeed in referring to a number, with a term which says we can't do that [Hart,WD]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The Burali-Forti paradox is a crisis for Cantor's ordinals [Hart,WD]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The machinery used to solve the Liar can be rejigged to produce a new Liar [Hart,WD]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Von Neumann treated cardinals as a special sort of ordinal [Neumann, by Hart,WD]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
The less-than relation < well-orders, and partially orders, and totally orders the ordinal numbers [Hart,WD]
The axiom of infinity with separation gives a least limit ordinal ω [Hart,WD]
A von Neumann ordinal is a transitive set with transitive elements [Neumann, by Badiou]
There are at least as many infinite cardinals as transfinite ordinals (because they will map) [Hart,WD]
Von Neumann's ordinals generalise into the transfinite better, because Zermelo's ω is a singleton [Hart,WD]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
19th century arithmetization of analysis isolated the real numbers from geometry [Hart,WD]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A real number is the class of rationals less than the number [Russell/Whitehead, by Shapiro]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
We can establish truths about infinite numbers by means of induction [Hart,WD]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid has a unique parallel, spherical geometry has none, and saddle geometry has several [Hart,WD]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / a. Defining numbers
Russell takes numbers to be classes, but then reduces the classes to numerical quantifiers [Russell/Whitehead, by Bostock]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / g. Von Neumann numbers
For Von Neumann the successor of n is n U {n} (rather than {n}) [Neumann, by Maddy]
Von Neumann numbers are preferred, because they continue into the transfinite [Maddy on Neumann]
Each Von Neumann ordinal number is the set of its predecessors [Neumann, by Lavine]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Russell and Whitehead took arithmetic to be higher-order logic [Russell/Whitehead, by Hodes]
Russell and Whitehead were not realists, but embraced nearly all of maths in logic [Russell/Whitehead, by Friend]
'Principia' lacks a precise statement of the syntax [Gödel on Russell/Whitehead]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
The ramified theory of types used propositional functions, and covered bound variables [Russell/Whitehead, by George/Velleman]
The Russell/Whitehead type theory was limited, and was not really logic [Friend on Russell/Whitehead]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics makes existence claims, but philosophers usually say those are never analytic [Hart,WD]
In 'Principia Mathematica', logic is exceeded in the axioms of infinity and reducibility, and in the domains [Bernays on Russell/Whitehead]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Russell and Whitehead consider the paradoxes to indicate that we create mathematical reality [Russell/Whitehead, by Friend]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
To avoid vicious circularity Russell produced ramified type theory, but Ramsey simplified it [Russell/Whitehead, by Shapiro]
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
Mass words do not have plurals, or numerical adjectives, or use 'fewer' [Hart,WD]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
An object is identical with itself, and no different indiscernible object can share that [Russell/Whitehead, by Adams,RM]
12. Knowledge Sources / A. A Priori Knowledge / 2. Self-Evidence
Fregean self-evidence is an intrinsic property of basic truths, rules and definitions [Hart,WD]
12. Knowledge Sources / A. A Priori Knowledge / 11. Denying the A Priori
The failure of key assumptions in geometry, mereology and set theory throw doubt on the a priori [Hart,WD]
12. Knowledge Sources / E. Direct Knowledge / 2. Intuition
Russell showed, through the paradoxes, that our basic logical intuitions are self-contradictory [Russell/Whitehead, by Gödel]
18. Thought / A. Modes of Thought / 6. Judgement / a. Nature of Judgement
The multiple relations theory says assertions about propositions are about their ingredients [Russell/Whitehead, by Linsky,B]
A judgement is a complex entity, of mind and various objects [Russell/Whitehead]
The meaning of 'Socrates is human' is completed by a judgement [Russell/Whitehead]
The multiple relation theory of judgement couldn't explain the unity of sentences [Morris,M on Russell/Whitehead]
Only the act of judging completes the meaning of a statement [Russell/Whitehead]
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
The Fregean concept of GREEN is a function assigning true to green things, and false to the rest [Hart,WD]
19. Language / D. Propositions / 3. Concrete Propositions
Propositions as objects of judgement don't exist, because we judge several objects, not one [Russell/Whitehead]