Combining Texts

All the ideas for 'The Evolution of Logic', 'Senses of Essence' and 'Beginning Logic'

expand these ideas     |    start again     |     specify just one area for these texts


104 ideas

1. Philosophy / C. History of Philosophy / 4. Later European Philosophy / c. Eighteenth century philosophy
We are all post-Kantians, because he set the current agenda for philosophy [Hart,WD]
1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / d. Philosophy as puzzles
The problems are the monuments of philosophy [Hart,WD]
1. Philosophy / F. Analytic Philosophy / 6. Logical Analysis
To study abstract problems, some knowledge of set theory is essential [Hart,WD]
2. Reason / D. Definition / 6. Definition by Essence
The essence or definition of an essence involves either a class of properties or a class of propositions [Fine,K]
3. Truth / C. Correspondence Truth / 2. Correspondence to Facts
Tarski showed how we could have a correspondence theory of truth, without using 'facts' [Hart,WD]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Truth for sentences is satisfaction of formulae; for sentences, either all sequences satisfy it (true) or none do [Hart,WD]
3. Truth / F. Semantic Truth / 2. Semantic Truth
A first-order language has an infinity of T-sentences, which cannot add up to a definition of truth [Hart,WD]
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
'Contradictory' propositions always differ in truth-value [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / a. Symbols of PL
That proposition that both P and Q is their 'conjunction', written P∧Q [Lemmon]
The sign |- may be read as 'therefore' [Lemmon]
If A and B are 'interderivable' from one another we may write A -||- B [Lemmon]
We write the conditional 'if P (antecedent) then Q (consequent)' as P→Q [Lemmon]
We write the 'negation' of P (not-P) as ¬ [Lemmon]
That proposition that either P or Q is their 'disjunction', written P∨Q [Lemmon]
We write 'P if and only if Q' as P↔Q; it is also P iff Q, or (P→Q)∧(Q→P) [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'well-formed formula' follows the rules for variables, ¬, →, ∧, ∨, and ↔ [Lemmon]
A 'substitution-instance' is a wff formed by consistent replacing variables with wffs [Lemmon]
A wff is 'inconsistent' if all assignments to variables result in the value F [Lemmon]
Two propositions are 'equivalent' if they mirror one another's truth-value [Lemmon]
The 'scope' of a connective is the connective, the linked formulae, and the brackets [Lemmon]
A 'theorem' is the conclusion of a provable sequent with zero assumptions [Lemmon]
A 'implies' B if B is true whenever A is true (so that A→B is tautologous) [Lemmon]
A wff is 'contingent' if produces at least one T and at least one F [Lemmon]
'Subcontrary' propositions are never both false, so that A∨B is a tautology [Lemmon]
'Contrary' propositions are never both true, so that ¬(A∧B) is a tautology [Lemmon]
A wff is a 'tautology' if all assignments to variables result in the value T [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
∧E: Given A∧B, we may derive either A or B separately [Lemmon]
∨E: Derive C from A∨B, if C can be derived both from A and from B [Lemmon]
MTT: Given ¬B and A→B, we derive ¬A [Lemmon]
∧I: Given A and B, we may derive A∧B [Lemmon]
MPP: Given A and A→B, we may derive B [Lemmon]
DN: Given A, we may derive ¬¬A [Lemmon]
Conditional Proof: infer a conditional, if the consequent can be deduced from the antecedent [Hart,WD]
A: we may assume any proposition at any stage [Lemmon]
∨I: Given either A or B separately, we may derive A∨B [Lemmon]
RAA: If assuming A will prove B∧¬B, then derive ¬A [Lemmon]
CP: Given a proof of B from A as assumption, we may derive A→B [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Modus ponendo tollens' (MPT) says P, ¬(P ∧ Q) |- ¬Q [Lemmon]
We can change conjunctions into negated conditionals with P→Q -||- ¬(P → ¬Q) [Lemmon]
The Distributive Laws can rearrange a pair of conjunctions or disjunctions [Lemmon]
De Morgan's Laws make negated conjunctions/disjunctions into non-negated disjunctions/conjunctions [Lemmon]
We can change conditionals into disjunctions with P→Q -||- ¬P ∨ Q [Lemmon]
We can change conditionals into negated conjunctions with P→Q -||- ¬(P ∧ ¬Q) [Lemmon]
'Modus tollendo ponens' (MTP) says ¬P, P ∨ Q |- Q [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Truth-tables are good for showing invalidity [Lemmon]
A truth-table test is entirely mechanical, but this won't work for more complex logic [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 4. Soundness of PL
If any of the nine rules of propositional logic are applied to tautologies, the result is a tautology [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 5. Completeness of PL
Propositional logic is complete, since all of its tautologous sequents are derivable [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / a. Symbols of PC
Write '(∀x)(...)' to mean 'take any x: then...', and '(∃x)(...)' to mean 'there is an x such that....' [Lemmon]
'Gm' says m has property G, and 'Pmn' says m has relation P to n [Lemmon]
The 'symbols' are bracket, connective, term, variable, predicate letter, reverse-E [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / b. Terminology of PC
Our notation uses 'predicate-letters' (for 'properties'), 'variables', 'proper names', 'connectives' and 'quantifiers' [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / c. Derivations rules of PC
Universal Elimination (UE) lets us infer that an object has F, from all things having F [Lemmon]
Predicate logic uses propositional connectives and variables, plus new introduction and elimination rules [Lemmon]
Universal elimination if you start with the universal, introduction if you want to end with it [Lemmon]
With finite named objects, we can generalise with &-Intro, but otherwise we need ∀-Intro [Lemmon]
UE all-to-one; UI one-to-all; EI arbitrary-to-one; EE proof-to-one [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
If there is a finite domain and all objects have names, complex conjunctions can replace universal quantifiers [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
'Some Frenchmen are generous' is rendered by (∃x)(Fx→Gx), and not with the conditional → [Lemmon]
∃y... is read as 'There exists an individual, call it y, such that...', and not 'There exists a y such that...' [Hart,WD]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Set theory articulates the concept of order (through relations) [Hart,WD]
Nowadays ZFC and NBG are the set theories; types are dead, and NF is only useful for the whole universe [Hart,WD]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
∈ relates across layers, while ⊆ relates within layers [Hart,WD]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Without the empty set we could not form a∩b without checking that a and b meet [Hart,WD]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
In the modern view, foundation is the heart of the way to do set theory [Hart,WD]
Foundation Axiom: an nonempty set has a member disjoint from it [Hart,WD]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
With the Axiom of Choice every set can be well-ordered [Hart,WD]
We can choose from finite and evident sets, but not from infinite opaque ones [Hart,WD]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
If we accept that V=L, it seems to settle all the open questions of set theory [Hart,WD]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory has trouble with comprehension, the claim that every predicate has an extension [Hart,WD]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception may not be necessary, and may have fixed points or infinitely descending chains [Hart,WD]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
'Well-ordering' must have a least member, so it does the natural numbers but not the integers [Hart,WD]
A partial ordering becomes 'total' if any two members of its field are comparable [Hart,WD]
A 'partial ordering' is irreflexive and transitive; the sets are ordered, but not the subsets [Hart,WD]
Von Neumann defines α<β as α∈β [Hart,WD]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Maybe sets should be rethought in terms of the even more basic categories [Hart,WD]
5. Theory of Logic / B. Logical Consequence / 8. Material Implication
The paradoxes of material implication are P |- Q → P, and ¬P |- P → Q [Lemmon]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Logical concepts rest on certain inferences, not on facts about implications [Fine,K]
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
The property of Property Abstraction says any suitable condition must imply a property [Fine,K]
5. Theory of Logic / G. Quantification / 3. Objectual Quantification
The universal quantifier can't really mean 'all', because there is no universal set [Hart,WD]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A logical truth is true in virtue of the nature of the logical concepts [Fine,K]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory studies how set theory can model sets of sentences [Hart,WD]
Model theory is mostly confined to first-order theories [Hart,WD]
Models are ways the world might be from a first-order point of view [Hart,WD]
Modern model theory begins with the proof of Los's Conjecture in 1962 [Hart,WD]
5. Theory of Logic / K. Features of Logics / 6. Compactness
First-order logic is 'compact': consequences of a set are consequences of a finite subset [Hart,WD]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox: we succeed in referring to a number, with a term which says we can't do that [Hart,WD]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The Burali-Forti paradox is a crisis for Cantor's ordinals [Hart,WD]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The machinery used to solve the Liar can be rejigged to produce a new Liar [Hart,WD]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
The less-than relation < well-orders, and partially orders, and totally orders the ordinal numbers [Hart,WD]
There are at least as many infinite cardinals as transfinite ordinals (because they will map) [Hart,WD]
The axiom of infinity with separation gives a least limit ordinal ω [Hart,WD]
Von Neumann's ordinals generalise into the transfinite better, because Zermelo's ω is a singleton [Hart,WD]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
19th century arithmetization of analysis isolated the real numbers from geometry [Hart,WD]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
We can establish truths about infinite numbers by means of induction [Hart,WD]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid has a unique parallel, spherical geometry has none, and saddle geometry has several [Hart,WD]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics makes existence claims, but philosophers usually say those are never analytic [Hart,WD]
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
Mass words do not have plurals, or numerical adjectives, or use 'fewer' [Hart,WD]
9. Objects / D. Essence of Objects / 1. Essences of Objects
Can the essence of an object circularly involve itself, or involve another object? [Fine,K]
9. Objects / D. Essence of Objects / 3. Individual Essences
Being a man is a consequence of his essence, not constitutive of it [Fine,K]
9. Objects / D. Essence of Objects / 4. Essence as Definition
If there are alternative definitions, then we have three possibilities for essence [Fine,K]
12. Knowledge Sources / A. A Priori Knowledge / 2. Self-Evidence
Fregean self-evidence is an intrinsic property of basic truths, rules and definitions [Hart,WD]
12. Knowledge Sources / A. A Priori Knowledge / 11. Denying the A Priori
The failure of key assumptions in geometry, mereology and set theory throw doubt on the a priori [Hart,WD]
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
The Fregean concept of GREEN is a function assigning true to green things, and false to the rest [Hart,WD]