Combining Texts

All the ideas for 'Approaches to Intentionality', 'Understanding the Infinite' and 'Meno'

expand these ideas     |    start again     |     specify just one area for these texts


51 ideas

1. Philosophy / A. Wisdom / 1. Nature of Wisdom
Spiritual qualities only become advantageous with the growth of wisdom [Plato]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
5. Theory of Logic / L. Paradox / 2. Aporiai
How can you seek knowledge of something if you don't know it? [Plato]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
11. Knowledge Aims / A. Knowledge / 3. Value of Knowledge
True opinions only become really valuable when they are tied down by reasons [Plato]
11. Knowledge Aims / A. Knowledge / 4. Belief / a. Beliefs
Belief is the most important propositional attitude [Lyons]
12. Knowledge Sources / A. A Priori Knowledge / 3. Innate Knowledge / b. Recollection doctrine
Seeking and learning are just recollection [Plato]
The slave boy learns geometry from questioning, not teaching, so it is recollection [Plato]
13. Knowledge Criteria / A. Justification Problems / 1. Justification / b. Need for justification
As a guide to action, true opinion is as good as knowledge [Plato]
13. Knowledge Criteria / D. Scepticism / 6. Scepticism Critique
You don't need to learn what you know, and how do you seek for what you don't know? [Plato]
15. Nature of Minds / B. Features of Minds / 4. Intentionality / b. Intentionality theories
Consciousness no longer seems essential to intentionality [Lyons]
17. Mind and Body / E. Mind as Physical / 4. Connectionism
Perceptions could give us information without symbolic representation [Lyons]
18. Thought / A. Modes of Thought / 2. Propositional Attitudes
Propositional attitudes require representation [Lyons]
18. Thought / A. Modes of Thought / 4. Folk Psychology
Folk psychology works badly for alien cultures [Lyons]
18. Thought / C. Content / 1. Content
All thinking has content [Lyons]
23. Ethics / C. Virtue Theory / 2. Elements of Virtue Theory / d. Teaching virtue
Is virtue taught, or achieved by practice, or a natural aptitude, or what? [Plato]
If virtue is a type of knowledge then it ought to be taught [Plato]
It seems that virtue is neither natural nor taught, but is a divine gift [Plato]
23. Ethics / C. Virtue Theory / 2. Elements of Virtue Theory / j. Unity of virtue
How can you know part of virtue without knowing the whole? [Plato]
Even if virtues are many and various, they must have something in common to make them virtues [Plato]