Combining Texts

All the ideas for 'Reportatio', 'Foundations without Foundationalism' and 'The Logic of What Might Have Been'

expand these ideas     |    start again     |     specify just one area for these texts


79 ideas

3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Satisfaction is 'truth in a model', which is a model of 'truth' [Shapiro]
4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
Aristotelian logic is complete [Shapiro]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / b. Terminology of ML
A world is 'accessible' to another iff the first is possible according to the second [Salmon,N]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / d. System T
For metaphysics, T may be the only correct system of modal logic [Salmon,N]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / f. System B
System B has not been justified as fallacy-free for reasoning on what might have been [Salmon,N]
In B it seems logically possible to have both p true and p is necessarily possibly false [Salmon,N]
System B implies that possibly-being-realized is an essential property of the world [Salmon,N]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
What is necessary is not always necessarily necessary, so S4 is fallacious [Salmon,N]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
S5 modal logic ignores accessibility altogether [Salmon,N]
S5 believers say that-things-might-have-been-that-way is essential to ways things might have been [Salmon,N]
The unsatisfactory counterpart-theory allows the retention of S5 [Salmon,N]
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Metaphysical (alethic) modal logic concerns simple necessity and possibility (not physical, epistemic..) [Salmon,N]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A set is 'transitive' if contains every member of each of its members [Shapiro]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice is essential for proving downward Löwenheim-Skolem [Shapiro]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
Are sets part of logic, or part of mathematics? [Shapiro]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
It is central to the iterative conception that membership is well-founded, with no infinite descending chains [Shapiro]
Russell's paradox shows that there are classes which are not iterative sets [Shapiro]
Iterative sets are not Boolean; the complement of an iterative set is not an iterative sets [Shapiro]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
'Well-ordering' of a set is an irreflexive, transitive, and binary relation with a least element [Shapiro]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
There is no 'correct' logic for natural languages [Shapiro]
Logic is the ideal for learning new propositions on the basis of others [Shapiro]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Bernays (1918) formulated and proved the completeness of propositional logic [Shapiro]
Can one develop set theory first, then derive numbers, or are numbers more basic? [Shapiro]
Skolem and Gödel championed first-order, and Zermelo, Hilbert, and Bernays championed higher-order [Shapiro]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic was an afterthought in the development of modern logic [Shapiro]
The 'triumph' of first-order logic may be related to logicism and the Hilbert programme, which failed [Shapiro]
Maybe compactness, semantic effectiveness, and the Löwenheim-Skolem properties are desirable [Shapiro]
The notion of finitude is actually built into first-order languages [Shapiro]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic is better than set theory, since it only adds relations and operations, and nothing else [Shapiro, by Lavine]
Broad standard semantics, or Henkin semantics with a subclass, or many-sorted first-order semantics? [Shapiro]
Henkin semantics has separate variables ranging over the relations and over the functions [Shapiro]
In standard semantics for second-order logic, a single domain fixes the ranges for the variables [Shapiro]
Completeness, Compactness and Löwenheim-Skolem fail in second-order standard semantics [Shapiro]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Semantic consequence is ineffective in second-order logic [Shapiro]
If a logic is incomplete, its semantic consequence relation is not effective [Shapiro]
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Finding the logical form of a sentence is difficult, and there are no criteria of correctness [Shapiro]
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
We might reduce ontology by using truth of sentences and terms, instead of using objects satisfying models [Shapiro]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
'Satisfaction' is a function from models, assignments, and formulas to {true,false} [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Semantics for models uses set-theory [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An axiomatization is 'categorical' if its models are isomorphic, so there is really only one interpretation [Shapiro]
Categoricity can't be reached in a first-order language [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The Löwenheim-Skolem theorems show an explosion of infinite models, so 1st-order is useless for infinity [Shapiro]
Substitutional semantics only has countably many terms, so Upward Löwenheim-Skolem trivially fails [Shapiro]
Downward Löwenheim-Skolem: each satisfiable countable set always has countable models [Shapiro]
Upward Löwenheim-Skolem: each infinite model has infinite models of all sizes [Shapiro]
5. Theory of Logic / K. Features of Logics / 3. Soundness
'Weakly sound' if every theorem is a logical truth; 'sound' if every deduction is a semantic consequence [Shapiro]
5. Theory of Logic / K. Features of Logics / 4. Completeness
We can live well without completeness in logic [Shapiro]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Non-compactness is a strength of second-order logic, enabling characterisation of infinite structures [Shapiro]
Compactness is derived from soundness and completeness [Shapiro]
5. Theory of Logic / K. Features of Logics / 9. Expressibility
A language is 'semantically effective' if its logical truths are recursively enumerable [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Complex numbers can be defined as reals, which are defined as rationals, then integers, then naturals [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Only higher-order languages can specify that 0,1,2,... are all the natural numbers that there are [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Natural numbers are the finite ordinals, and integers are equivalence classes of pairs of finite ordinals [Shapiro]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The 'continuum' is the cardinality of the powerset of a denumerably infinite set [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
First-order arithmetic can't even represent basic number theory [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Some sets of natural numbers are definable in set-theory but not in arithmetic [Shapiro]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Logicism is distinctive in seeking a universal language, and denying that logic is a series of abstractions [Shapiro]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics and logic have no border, and logic must involve mathematics and its ontology [Shapiro]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Some reject formal properties if they are not defined, or defined impredicatively [Shapiro]
8. Modes of Existence / B. Properties / 10. Properties as Predicates
Properties are often seen as intensional; equiangular and equilateral are different, despite identity of objects [Shapiro]
9. Objects / D. Essence of Objects / 15. Against Essentialism
Any property is attached to anything in some possible world, so I am a radical anti-essentialist [Salmon,N]
10. Modality / A. Necessity / 3. Types of Necessity
Logical possibility contains metaphysical possibility, which contains nomological possibility [Salmon,N]
10. Modality / A. Necessity / 5. Metaphysical Necessity
In the S5 account, nested modalities may be unseen, but they are still there [Salmon,N]
Metaphysical necessity is said to be unrestricted necessity, true in every world whatsoever [Salmon,N]
Bizarre identities are logically but not metaphysically possible, so metaphysical modality is restricted [Salmon,N]
Without impossible worlds, the unrestricted modality that is metaphysical has S5 logic [Salmon,N]
Metaphysical necessity is NOT truth in all (unrestricted) worlds; necessity comes first, and is restricted [Salmon,N]
10. Modality / A. Necessity / 6. Logical Necessity
Logical necessity is free of constraints, and may accommodate all of S5 logic [Salmon,N]
10. Modality / A. Necessity / 7. Natural Necessity
Nomological necessity is expressed with intransitive relations in modal semantics [Salmon,N]
10. Modality / C. Sources of Modality / 5. Modality from Actuality
Necessity and possibility are not just necessity and possibility according to the actual world [Salmon,N]
10. Modality / E. Possible worlds / 1. Possible Worlds / b. Impossible worlds
Impossible worlds are also ways for things to be [Salmon,N]
Denial of impossible worlds involves two different confusions [Salmon,N]
Without impossible worlds, how things might have been is the only way for things to be [Salmon,N]
10. Modality / E. Possible worlds / 1. Possible Worlds / e. Against possible worlds
Possible worlds rely on what might have been, so they can' be used to define or analyse modality [Salmon,N]
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / a. Nature of possible worlds
Possible worlds are maximal abstract ways that things might have been [Salmon,N]
Possible worlds just have to be 'maximal', but they don't have to be consistent [Salmon,N]
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / c. Worlds as propositions
You can't define worlds as sets of propositions, and then define propositions using worlds [Salmon,N]
28. God / A. Divine Nature / 3. Divine Perfections
God is not wise, but more-than-wise; God is not good, but more-than-good [William of Ockham]
28. God / C. Attitudes to God / 4. God Reflects Humanity
We could never form a concept of God's wisdom if we couldn't abstract it from creatures [William of Ockham]