Combining Texts

All the ideas for 'works', 'Axiomatic Theories of Truth' and 'Intro to Gdel's Theorems'

expand these ideas     |    start again     |     specify just one area for these texts


96 ideas

1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
Analysis rests on natural language, but its ideal is a framework which revises language [Halbach]
2. Reason / B. Laws of Thought / 6. Ockham's Razor
Do not multiply entities beyond necessity [William of Ockham]
2. Reason / D. Definition / 2. Aims of Definition
An explicit definition enables the elimination of what is defined [Halbach]
2. Reason / E. Argument / 3. Analogy
Don't trust analogies; they are no more than a guideline [Halbach]
3. Truth / A. Truth Problems / 1. Truth
Truth axioms prove objects exist, so truth doesn't seem to be a logical notion [Halbach]
Truth-value 'gluts' allow two truth values together; 'gaps' give a partial conception of truth [Halbach]
3. Truth / A. Truth Problems / 2. Defining Truth
Any definition of truth requires a metalanguage [Halbach]
Traditional definitions of truth often make it more obscure, rather than less [Halbach]
If people have big doubts about truth, a definition might give it more credibility [Halbach]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
Semantic theories avoid Tarski's Theorem by sticking to a sublanguage [Halbach]
3. Truth / F. Semantic Truth / 2. Semantic Truth
Disquotational truth theories are short of deductive power [Halbach]
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
Axiomatic truth doesn't presuppose a truth-definition, though it could admit it at a later stage [Halbach]
To axiomatise Tarski's truth definition, we need a binary predicate for his 'satisfaction' [Halbach]
Compositional Truth CT has the truth of a sentence depending of the semantic values of its constituents [Halbach]
The main semantic theories of truth are Kripke's theory, and revisions semantics [Halbach]
Gödel numbering means a theory of truth can use Peano Arithmetic as its base theory [Halbach]
Truth axioms need a base theory, because that is where truth issues arise [Halbach]
CT proves PA consistent, which PA can't do on its own, so CT is not conservative over PA [Halbach]
We know a complete axiomatisation of truth is not feasible [Halbach]
A theory is 'conservative' if it adds no new theorems to its base theory [Halbach, by PG]
The Tarski Biconditional theory TB is Peano Arithmetic, plus truth, plus all Tarski bi-conditionals [Halbach]
Theories of truth are 'typed' (truth can't apply to sentences containing 'true'), or 'type-free' [Halbach]
3. Truth / G. Axiomatic Truth / 2. FS Truth Axioms
Friedman-Sheard is type-free Compositional Truth, with two inference rules for truth [Halbach]
3. Truth / G. Axiomatic Truth / 3. KF Truth Axioms
The KF theory is useful, but it is not a theory containing its own truth predicate [Halbach]
Kripke-Feferman theory KF axiomatises Kripke fixed-points, with Strong Kleene logic with gluts [Halbach]
The KF is much stronger deductively than FS, which relies on classical truth [Halbach]
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Deflationism says truth is a disquotation device to express generalisations, adding no new knowledge [Halbach]
The main problem for deflationists is they can express generalisations, but not prove them [Halbach]
Deflationists say truth is just for expressing infinite conjunctions or generalisations [Halbach]
Compositional Truth CT proves generalisations, so is preferred in discussions of deflationism [Halbach]
Some say deflationism is axioms which are conservative over the base theory [Halbach]
4. Formal Logic / E. Nonclassical Logics / 3. Many-Valued Logic
In Strong Kleene logic a disjunction just needs one disjunct to be true [Halbach]
In Weak Kleene logic there are 'gaps', neither true nor false if one component lacks a truth value [Halbach]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Every attempt at formal rigour uses some set theory [Halbach]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
There cannot be a set theory which is complete [Smith,P]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
The underestimated costs of giving up classical logic are found in mathematical reasoning [Halbach]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order arithmetic can prove new sentences of first-order [Smith,P]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'total function' maps every element to one element in another set [Smith,P]
An argument is a 'fixed point' for a function if it is mapped back to itself [Smith,P]
Two functions are the same if they have the same extension [Smith,P]
A 'partial function' maps only some elements to another set [Smith,P]
The 'range' of a function is the set of elements in the output set created by the function [Smith,P]
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
The Comprehension Schema says there is a property only had by things satisfying a condition [Smith,P]
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
A theory is some formulae and all of their consequences [Halbach]
A 'theorem' of a theory is a sentence derived from the axioms using the proof system [Smith,P]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
A 'natural deduction system' has no axioms but many rules [Smith,P]
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
No nice theory can define truth for its own language [Smith,P]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
A 'bijective' function has one-to-one correspondence in both directions [Smith,P]
A 'surjective' ('onto') function creates every element of the output set [Smith,P]
An 'injective' ('one-to-one') function creates a distinct output element from each original [Smith,P]
5. Theory of Logic / K. Features of Logics / 3. Soundness
If everything that a theory proves is true, then it is 'sound' [Smith,P]
Soundness is true axioms and a truth-preserving proof system [Smith,P]
You cannot just say all of Peano arithmetic is true, as 'true' isn't part of the system [Halbach]
A theory is 'sound' iff every theorem is true (usually from true axioms and truth-preservation) [Smith,P]
Normally we only endorse a theory if we believe it to be sound [Halbach]
Soundness must involve truth; the soundness of PA certainly needs it [Halbach]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A theory is 'negation complete' if it proves all sentences or their negation [Smith,P]
'Complete' applies both to whole logics, and to theories within them [Smith,P]
A theory is 'negation complete' if one of its sentences or its negation can always be proved [Smith,P]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Two routes to Incompleteness: semantics of sound/expressible, or syntax of consistency/proof [Smith,P]
5. Theory of Logic / K. Features of Logics / 7. Decidability
A theory is 'decidable' if all of its sentences could be mechanically proved [Smith,P]
Any consistent, axiomatized, negation-complete formal theory is decidable [Smith,P]
'Effective' means simple, unintuitive, independent, controlled, dumb, and terminating [Smith,P]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A set is 'enumerable' is all of its elements can result from a natural number function [Smith,P]
A set is 'effectively enumerable' if a computer could eventually list every member [Smith,P]
A finite set of finitely specifiable objects is always effectively enumerable (e.g. primes) [Smith,P]
The set of ordered pairs of natural numbers <i,j> is effectively enumerable [Smith,P]
The thorems of a nice arithmetic can be enumerated, but not the truths (so they're diffferent) [Smith,P]
5. Theory of Logic / K. Features of Logics / 9. Expressibility
Being 'expressible' depends on language; being 'capture/represented' depends on axioms and proof system [Smith,P]
5. Theory of Logic / L. Paradox / 1. Paradox
Many new paradoxes may await us when we study interactions between frameworks [Halbach]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The liar paradox applies truth to a negated truth (but the conditional will serve equally) [Halbach]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
For primes we write (x not= 1 ∧ ∀u∀v(u x v = x → (u = 1 ∨ v = 1))) [Smith,P]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
The reals contain the naturals, but the theory of reals doesn't contain the theory of naturals [Smith,P]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
The truths of arithmetic are just true equations and their universally quantified versions [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
All numbers are related to zero by the ancestral of the successor relation [Smith,P]
The number of Fs is the 'successor' of the Gs if there is a single F that isn't G [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / b. Baby arithmetic
Baby arithmetic covers addition and multiplication, but no general facts about numbers [Smith,P]
Baby Arithmetic is complete, but not very expressive [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / c. Robinson arithmetic
Robinson Arithmetic 'Q' has basic axioms, quantifiers and first-order logic [Smith,P]
Robinson Arithmetic (Q) is not negation complete [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Natural numbers have zero, unique successors, unending, no circling back, and no strays [Smith,P]
The compactness theorem can prove nonstandard models of PA [Halbach]
The global reflection principle seems to express the soundness of Peano Arithmetic [Halbach]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
The logic of arithmetic must quantify over properties of numbers to handle induction [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Incompleteness results in arithmetic from combining addition and successor with multiplication [Smith,P]
Multiplication only generates incompleteness if combined with addition and successor [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
To reduce PA to ZF, we represent the non-negative integers with von Neumann ordinals [Halbach]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Set theory was liberated early from types, and recent truth-theories are exploring type-free [Halbach]
7. Existence / C. Structure of Existence / 2. Reduction
That Peano arithmetic is interpretable in ZF set theory is taken by philosophers as a reduction [Halbach]
8. Modes of Existence / A. Relations / 4. Formal Relations / c. Ancestral relation
The 'ancestral' of a relation is a new relation which creates a long chain of the original relation [Smith,P]
8. Modes of Existence / D. Universals / 5. Universals as Concepts
Species and genera are individual concepts which naturally signify many individuals [William of Ockham]
10. Modality / A. Necessity / 2. Nature of Necessity
Maybe necessity is a predicate, not the usual operator, to make it more like truth [Halbach]
19. Language / D. Propositions / 4. Mental Propositions
We need propositions to ascribe the same beliefs to people with different languages [Halbach]
27. Natural Reality / D. Time / 1. Nature of Time / i. Denying time
The past has ceased to exist, and the future does not yet exist, so time does not exist [William of Ockham]
28. God / A. Divine Nature / 6. Divine Morality / d. God decrees morality
William of Ockham is the main spokesman for God's commands being the source of morality [William of Ockham]
29. Religion / B. Monotheistic Religion / 4. Christianity / c. Angels
Even an angel must have some location [William of Ockham, by Pasnau]