Combining Texts

All the ideas for 'Can there be Vague Objects?st1=Gareth Evans', 'Letters to Paul Pellison-Fontinier' and 'A Tour through Mathematical Logic'

expand these ideas     |    start again     |     specify just one area for these texts


27 ideas

4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'tautology' must include connectives [Wolf,RS]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Deduction Theorem: T∪{P}|-Q, then T|-(P→Q), which justifies Conditional Proof [Wolf,RS]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
Universal Specification: ∀xP(x) implies P(t). True for all? Then true for an instance [Wolf,RS]
Universal Generalization: If we prove P(x) with no special assumptions, we can conclude ∀xP(x) [Wolf,RS]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
Existential Generalization (or 'proof by example'): if we can say P(t), then we can say something is P [Wolf,RS]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / e. Axiom of the Empty Set IV
Empty Set: ∃x∀y ¬(y∈x). The unique empty set exists [Wolf,RS]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension Axiom: if a collection is clearly specified, it is a set [Wolf,RS]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
In first-order logic syntactic and semantic consequence (|- and |=) nicely coincide [Wolf,RS]
First-order logic is weakly complete (valid sentences are provable); we can't prove every sentence or its negation [Wolf,RS]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory uses sets to show that mathematical deduction fits mathematical truth [Wolf,RS]
Model theory reveals the structures of mathematics [Wolf,RS]
Model theory 'structures' have a 'universe', some 'relations', some 'functions', and some 'constants' [Wolf,RS]
First-order model theory rests on completeness, compactness, and the Löwenheim-Skolem-Tarski theorem [Wolf,RS]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An 'isomorphism' is a bijection that preserves all structural components [Wolf,RS]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The LST Theorem is a serious limitation of first-order logic [Wolf,RS]
5. Theory of Logic / K. Features of Logics / 4. Completeness
If a theory is complete, only a more powerful language can strengthen it [Wolf,RS]
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Most deductive logic (unlike ordinary reasoning) is 'monotonic' - we don't retract after new givens [Wolf,RS]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
An ordinal is an equivalence class of well-orderings, or a transitive set whose members are transitive [Wolf,RS]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Modern mathematics has unified all of its objects within set theory [Wolf,RS]
7. Existence / D. Theories of Reality / 10. Vagueness / b. Vagueness of reality
Evans argues (falsely!) that a contradiction follows from treating objects as vague [Evans, by Lowe]
Is it coherent that reality is vague, identities can be vague, and objects can have fuzzy boundaries? [Evans]
There clearly are vague identity statements, and Evans's argument has a false conclusion [Evans, by Lewis]
Evans assumes there can be vague identity statements, and that his proof cannot be right [Evans, by Lewis]
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
If a=b is indeterminate, then a=/=b, and so there cannot be indeterminate identity [Evans, by Thomasson]
9. Objects / F. Identity among Objects / 6. Identity between Objects
There can't be vague identity; a and b must differ, since a, unlike b, is only vaguely the same as b [Evans, by PG]
27. Natural Reality / A. Classical Physics / 1. Mechanics / c. Forces
Clearly, force is that from which action follows, when unimpeded [Leibniz]
27. Natural Reality / D. Time / 1. Nature of Time / i. Denying time
Time doesn't exist, since its parts don't coexist [Leibniz]