Combining Texts

All the ideas for 'What is Cantor's Continuum Problem?st1=Kurt Gödel', 'Logicism and Ontological Commits. of Arithmetic' and 'Methodological Reflections on Current Linguistic Theory'

expand these ideas     |    start again     |     specify just one area for these texts


17 ideas

3. Truth / F. Semantic Truth / 2. Semantic Truth
Truth in a model is more tractable than the general notion of truth [Hodes]
Truth is quite different in interpreted set theory and in the skeleton of its language [Hodes]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
We perceive the objects of set theory, just as we perceive with our senses [Gödel]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Gödel proved the classical relative consistency of the axiom V = L [Gödel, by Putnam]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Higher-order logic may be unintelligible, but it isn't set theory [Hodes]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Identity is a level one relation with a second-order definition [Hodes]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
When an 'interpretation' creates a model based on truth, this doesn't include Fregean 'sense' [Hodes]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / a. Set theory paradoxes
Set-theory paradoxes are no worse than sense deception in physics [Gödel]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Mathematics is higher-order modal logic [Hodes]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
Arithmetic must allow for the possibility of only a finite total of objects [Hodes]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis is not inconsistent with the axioms of set theory [Gödel, by Clegg]
If set theory is consistent, we cannot refute or prove the Continuum Hypothesis [Gödel, by Hart,WD]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
It is claimed that numbers are objects which essentially represent cardinality quantifiers [Hodes]
Numerical terms can't really stand for quantifiers, because that would make them first-level [Hodes]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Basic mathematics is related to abstract elements of our empirical ideas [Gödel]
7. Existence / D. Theories of Reality / 7. Fictionalism
Talk of mirror images is 'encoded fictions' about real facts [Hodes]
19. Language / C. Assigning Meanings / 2. Semantics
Syntax and semantics are indeterminate, and modern 'semantics' is a bogus subject [Quine, by Lycan]