Combining Texts

All the ideas for 'Matter and Memory', 'Science without Numbers' and 'Warrant and Proper Function'

expand these ideas     |    start again     |     specify just one area for these texts

24 ideas

4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
In Field's Platonist view, set theory is false because it asserts existence for non-existent things [Field,H, by Chihara]
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Logical consequence is defined by the impossibility of P and ¬q [Field,H, by Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
In Field's version of science, space-time points replace real numbers [Field,H, by Szabó]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
'Metric' axioms uses functions, points and numbers; 'synthetic' axioms give facts about space [Field,H]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
The Indispensability Argument is the only serious ground for the existence of mathematical entities [Field,H]
6. Mathematics / C. Sources of Mathematics / 3. Mathematical Nominalism
Nominalists try to only refer to physical objects, or language, or mental constructions [Field,H]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
The application of mathematics only needs its possibility, not its truth [Field,H, by Shapiro]
Hilbert explains geometry, by non-numerical facts about space [Field,H]
Field needs a semantical notion of second-order consequence, and that needs sets [Brown,JR on Field,H]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
It seems impossible to explain the idea that the conclusion is contained in the premises [Field,H]
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Abstractions can form useful counterparts to concrete statements [Field,H]
Mathematics is only empirical as regards which theory is useful [Field,H]
Why regard standard mathematics as truths, rather than as interesting fictions? [Field,H]
7. Existence / A. Nature of Existence / 3. Being / c. Becoming
Bergson was a rallying point, because he emphasised becomings and multiplicities [Bergson, by Deleuze]
7. Existence / D. Theories of Reality / 10. Ontological Commitment / a. Ontological commitment
You can reduce ontological commitment by expanding the logic [Field,H]
8. Modes of Existence / B. Properties / 12. Denial of Properties
Field presumes properties can be eliminated from science [Field,H, by Szabó]
9. Objects / A. Existence of Objects / 2. Abstract Objects / d. Problems with abstracta
Abstract objects are only applicable to the world if they are impure, and connect to the physical [Field,H]
12. Knowledge Sources / E. Direct Knowledge / 4. Memory
Bergson showed that memory is not after the event, but coexists with it [Bergson, by Deleuze]
13. Knowledge Criteria / C. External Justification / 3. Reliabilism / a. Reliable knowledge
Maybe a reliable justification must come from a process working with its 'proper function' [Plantinga, by Pollock/Cruz]
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
Beneath every extrinsic explanation there is an intrinsic explanation [Field,H]
18. Thought / E. Abstraction / 4. Abstracta by Example
'Abstract' is unclear, but numbers, functions and sets are clearly abstract [Field,H]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
In theories of fields, space-time points or regions are causal agents [Field,H]
27. Natural Reality / C. Space-Time / 1. Space / d. Substantival space
Both philosophy and physics now make substantivalism more attractive [Field,H]
27. Natural Reality / C. Space-Time / 1. Space / e. Relational space
Relational space is problematic if you take the idea of a field seriously [Field,H]