Single Idea 10554

[catalogued under 6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic]

Full Idea

In the intuitionist view, the notion of an intuitive proof cannot be expected to coincide with that of a proof in a formal system, and Gödel's incompleteness theorem is thus unsurprising from an intuitionist point of view.

Gist of Idea

Intuitionists find the Incompleteness Theorem unsurprising, since proof is intuitive, not formal

Source

Michael Dummett (Frege Philosophy of Language (2nd ed) [1973], Ch.14)

Book Reference

Dummett,Michael: 'Frege Philosophy of Language' [Duckworth 1981], p.511