Single Idea 13530

[catalogued under 6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers]

Full Idea

Less theoretically, an ordinal is an equivalence class of well-orderings. Formally, we say a set is 'transitive' if every member of it is a subset of it, and an ordinal is a transitive set, all of whose members are transitive.

Gist of Idea

An ordinal is an equivalence class of well-orderings, or a transitive set whose members are transitive

Source

Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.4)

Book Reference

Wolf,Robert S.: 'A Tour Through Mathematical Logic' [Carus Maths Monographs 2005], p.77


A Reaction

He glosses 'transitive' as 'every member of a member of it is a member of it'. So it's membership all the way down. This is the von Neumann rather than the Zermelo approach (which is based on singletons).