Single Idea 21718

[catalogued under 6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism]

Full Idea

A defence of the ramified theory of types comes in seeing it as a system of intensional logic which includes the 'no class' account of sets, and indeed the whole development of mathematics, as just a part.

Gist of Idea

Ramified types can be defended as a system of intensional logic, with a 'no class' view of sets

Source

report of Bertrand Russell (Mathematical logic and theory of types [1908]) by Bernard Linsky - Russell's Metaphysical Logic 6.1

Book Reference

Linsky,Bernard: 'Russell's Metaphysical Logic' [CSLI 1999], p.93


A Reaction

So Linsky's basic project is to save logicism, by resting on intensional logic (rather than extensional logic and set theory). I'm not aware that Linsky has acquired followers for this. Maybe Crispin Wright has commented?

Related Idea

Idea 15376 Intensional logic adds a second type of quantification, over intensional objects, or individual concepts [Fitting]