Single Idea 9026

[catalogued under 5. Theory of Logic / G. Quantification / 4. Substitutional Quantification]

Full Idea

An existential quantification could turn out false when substitutionally construed and true when objectually construed, because of there being objects of the purported kind but only nameless ones.

Gist of Idea

Some quantifications could be false substitutionally and true objectually, because of nameless objects

Source

Willard Quine (Philosophy of Logic [1970], Ch.6)

Book Reference

Quine,Willard: 'Philosophy of Logic' [Prentice-Hall 1970], p.93


A Reaction

(Cf. Idea 9025) Some irrational numbers were his candidates for nameless objects, but as decimals they are infinite in length which seems unfair. I don't take even pi or root-2 to be objects in nature, so not naming irrationals doesn't bother me.

Related Idea

Idea 9025 You can't base quantification on substituting names for variables, if the irrationals cannot all be named [Quine]