structure for 'Formal Logic'    |     alphabetical list of themes    |     unexpand these ideas

4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic

[overview of the logical relationships between propositions]

12 ideas
Stoic propositional logic is like chemistry - how atoms make molecules, not the innards of atoms [Chrysippus, by Devlin]
     Full Idea: In Stoic logic propositions are treated the way atoms are treated in present-day chemistry, where the focus is on the way atoms fit together to form molecules, rather than on the internal structure of the atoms.
     From: report of Chrysippus (fragments/reports [c.240 BCE]) by Keith Devlin - Goodbye Descartes Ch.2
     A reaction: A nice analogy to explain the nature of Propositional Logic, which was invented by the Stoics (N.B. after Aristotle had invented predicate logic).
Boole applied normal algebra to logic, aiming at an algebra of thought [Boole, by Devlin]
     Full Idea: Boole proposed to use the entire apparatus of a school algebra class, with operations such as addition and multiplication, methods to solve equations, and the like, to produce an algebra of thought.
     From: report of George Boole (The Laws of Thought [1854]) by Keith Devlin - Goodbye Descartes Ch.3
     A reaction: The Stoics didn’t use any algebraic notation for their study of propositions, so Boole's idea launched full blown propositional logic, and the rest of modern logic followed. Nice one.
Boole's notation can represent syllogisms and propositional arguments, but not both at once [Boole, by Weiner]
     Full Idea: Boole introduced a new symbolic notation in which it was possible to represent both syllogisms and propositional arguments, ...but not both at once.
     From: report of George Boole (The Laws of Thought [1854], Ch.3) by Joan Weiner - Frege
     A reaction: How important is the development of symbolic notations for the advancement of civilisations? Is there a perfect notation, as used in logical heaven?
'Contradictory' propositions always differ in truth-value [Lemmon]
     Full Idea: Two propositions are 'contradictory' if they are never both true and never both false either, which means that ¬(A↔B) is a tautology.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
Modern propositional inference replaces Aristotle's 19 syllogisms with modus ponens [Devlin]
     Full Idea: Where Aristotle had 19 different inference rules (his valid syllogisms), modern propositional logic carries out deductions using just one rule of inference: modus ponens.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 4)
     A reaction: At first glance it sounds as if Aristotle's guidelines might be more useful than the modern one, since he tells you something definite and what implies what, where modus ponens just seems to define the word 'implies'.
Aristotelian logic dealt with inferences about concepts, and there were also proposition inferences [Weiner]
     Full Idea: Till the nineteenth century, it was a common view that Aristotelian logic could evaluate inferences whose validity was based on relations between concepts, while propositional logic could evaluate inferences based on relations between propositions.
     From: Joan Weiner (Frege [1999], Ch.3)
     A reaction: Venn diagrams relate closely to Aristotelian syllogisms, as each concept is represented by a circle, and shows relations between sets. Arrows seem needed to represent how to go from one proposition to another. Is one static, the other dynamic?
Sentential logic is consistent (no contradictions) and complete (entirely provable) [Orenstein]
     Full Idea: Sentential logic has been proved consistent and complete; its consistency means that no contradictions can be derived, and its completeness assures us that every one of the logical truths can be proved.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: The situation for quantificational logic is not quite so clear (Orenstein p.98). I do not presume that being consistent and complete makes it necessarily better as a tool in the real world.
Propositional logic handles negation, disjunction, conjunction; predicate logic adds quantifiers, predicates, relations [Girle]
     Full Idea: Propositional logic can deal with negation, disjunction and conjunction of propositions, but predicate logic goes beyond it to deal with quantifiers, predicates and relations.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.1)
     A reaction: This is on the first page of an introduction to the next stage, which is to include modal notions like 'must' and 'possibly'.
There are three axiom schemas for propositional logic [Girle]
     Full Idea: The axioms of propositional logic are: A→(B→A); A→(B→C)→(A→B)→(A→C) ; and (¬A→¬B)→(B→A).
     From: Rod Girle (Modal Logics and Philosophy [2000], 6.5)
Post proved the consistency of propositional logic in 1921 [Walicki]
     Full Idea: A proof of the consistency of propositional logic was given by Emil Post in 1921.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2.1)
Propositional language can only relate statements as the same or as different [Walicki]
     Full Idea: Propositional language is very rudimentary and has limited powers of expression. The only relation between various statements it can handle is that of identity and difference. As are all the same, but Bs can be different from As.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 7 Intro)
     A reaction: [second sentence a paraphrase] In predicate logic you could represent two statements as being the same except for one element (an object or predicate or relation or quantifier).
Semantics for propositions: 1) validity preserves truth 2) non-contradition 3) bivalence 4) truth tables [Rumfitt]
     Full Idea: The classical semantics of natural language propositions says 1) valid arguments preserve truth, 2) no statement is both true and false, 3) each statement is either true or false, 4) the familiar truth tables.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)