structure for 'Mathematics'    |     alphabetical list of themes    |     unexpand these ideas

6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism

[revival of logicism after much criticism]

15 ideas
Ramified types can be defended as a system of intensional logic, with a 'no class' view of sets [Russell, by Linsky,B]
     Full Idea: A defence of the ramified theory of types comes in seeing it as a system of intensional logic which includes the 'no class' account of sets, and indeed the whole development of mathematics, as just a part.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by Bernard Linsky - Russell's Metaphysical Logic 6.1
     A reaction: So Linsky's basic project is to save logicism, by resting on intensional logic (rather than extensional logic and set theory). I'm not aware that Linsky has acquired followers for this. Maybe Crispin Wright has commented?
Neo-logicists agree that HP introduces number, but also claim that it suffices for the job [Bostock]
     Full Idea: The neo-logicists take up Frege's claim that Hume's Principle introduces a new concept (of a number), but unlike Frege they go on to claim that it by itself gives a complete account of that concept.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
     A reaction: So the big difference between Frege and neo-logicists is the Julius Caesar problem.
Neo-logicists meet the Caesar problem by saying Hume's Principle is unique to number [Bostock]
     Full Idea: The response of neo-logicists to the Julius Caesar problem is to strengthen Hume's Principle in the hope of ensuring that only numbers will satisfy it. They say the criterion of identity provided by HP is essential to number, and not to anything else.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
Wright has revived Frege's discredited logicism [Wright,C, by Benardete,JA]
     Full Idea: Crispin Wright has reactivated Frege's logistic program, which for decades just about everybody assumed was a lost cause.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by José A. Benardete - Logic and Ontology 3
     A reaction: [This opens Bernadete's section called "Back to Strong Logicism?"]
The Peano Axioms, and infinity of cardinal numbers, are logical consequences of how we explain cardinals [Wright,C]
     Full Idea: The Peano Axioms are logical consequences of a statement constituting the core of an explanation of the notion of cardinal number. The infinity of cardinal numbers emerges as a consequence of the way cardinal number is explained.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xix)
     A reaction: This, along with Idea 13896, nicely summarises the neo-logicist project. I tend to favour a strategy which starts from ordering, rather than identities (1-1), but an attraction is that this approach is closer to counting objects in its basics.
The aim is to follow Frege's strategy to derive the Peano Axioms, but without invoking classes [Wright,C]
     Full Idea: We shall endeavour to see whether it is possible to follow through the strategy adumbrated in 'Grundlagen' for establishing the Peano Axioms without at any stage invoking classes.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xvi)
     A reaction: The key idea of neo-logicism. If you can avoid classes entirely, then set theory paradoxes become irrelevant, and classes aren't logic. Philosophers now try to derive the Peano Axioms from all sorts of things. Wright admits infinity is a problem.
The neo-Fregean is more optimistic than Frege about contextual definitions of numbers [Hale/Wright]
     Full Idea: The neo-Fregean takes a more optimistic view than Frege of the prospects for the kind of contextual explanation of the fundamental concepts of arithmetic and analysis (cardinals and reals), which he rejected in 'Grundlagen' 60-68.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], §1)
Logicism might also be revived with a quantificational approach, or an abstraction-free approach [Hale/Wright]
     Full Idea: Two modern approaches to logicism are the quantificational approach of David Bostock, and the abstraction-free approach of Neil Tennant.
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 1 n2)
     A reaction: Hale and Wright mention these as alternatives to their own view. I merely catalogue them for further examination. My immediate reaction is that Bostock sounds hopeless and Tennant sounds interesting.
Neo-Fregeanism might be better with truth-makers, rather than quantifier commitment [Hale/Wright]
     Full Idea: A third way has been offered to 'make sense' of neo-Fregeanism: we should reject Quine's well-known criterion of ontological commitment in favour of one based on 'truth-maker theory'.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §4 n19)
     A reaction: [The cite Ross Cameron for this] They reject this proposal, on the grounds that truth-maker theory is not sufficient to fix the grounding truth-conditions of statements.
Mathematics is both necessary and a priori because it really consists of logical truths [Yablo]
     Full Idea: Mathematics seems necessary because the real contents of mathematical statements are logical truths, which are necessary, and it seems a priori because logical truths really are a priori.
     From: Stephen Yablo (Abstract Objects: a Case Study [2002], 10)
     A reaction: Yablo says his logicism has a Kantian strain, because numbers and sets 'inscribed on our spectacles', but he takes a different view (in the present Idea) from Kant about where the necessity resides. Personally I am tempted by an a posteriori necessity.
Proceduralism offers a version of logicism with no axioms, or objects, or ontological commitment [Fine,K]
     Full Idea: My Proceduralism offers axiom-free foundations for mathematics. Axioms give way to the stipulation of procedures. We obtain a form of logicism, but with a procedural twist, and with a logic which is ontologically neutral, and no assumption of objects.
     From: Kit Fine (Our Knowledge of Mathematical Objects [2005], 1)
     A reaction: [See Ideas 9222 and 9223 for his Proceduralism] Sounds like philosophical heaven. We get to take charge of mathematics, without the embarrassment of declaring ourselves to be platonists. Someone, not me, should evaluate this.
Logicism is distinctive in seeking a universal language, and denying that logic is a series of abstractions [Shapiro]
     Full Idea: It is claimed that aiming at a universal language for all contexts, and the thesis that logic does not involve a process of abstraction, separates the logicists from algebraists and mathematicians, and also from modern model theory.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.1)
     A reaction: I am intuitively drawn to the idea that logic is essentially the result of a series of abstractions, so this gives me a further reason not to be a logicist. Shapiro cites Goldfarb 1979 and van Heijenoort 1967. Logicists reduce abstraction to logic.
We can get arithmetic directly from HP; Law V was used to get HP from the definition of number [Maddy]
     Full Idea: Recent commentators have noted that Frege's versions of the basic propositions of arithmetic can be derived from Hume's Principle alone, that the fatal Law V is only needed to derive Hume's Principle itself from the definition of number.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: Crispin Wright is the famous exponent of this modern view. Apparently Charles Parsons (1965) first floated the idea.
Add Hume's principle to logic, to get numbers; arithmetic truths rest on the nature of the numbers [Hale]
     Full Idea: The existence of the natural numbers is not a matter of pure logic - it cannot be proved in pure logic. It can be proved in second-order logic plus Hume's principle. Truths of arithmetic are not logic - they depend on the nature of natural numbers.
     From: Bob Hale (Necessary Beings [2013], 07.4)
     A reaction: Hume's principles needs entities which can be matched to one another, so a certain ontology is needed to get neo-logicism off the ground.
Neo-Fregeans are dazzled by a technical result, and ignore practicalities [Hofweber]
     Full Idea: A major flaw of the neo-Fregean program is that it is more impressed by the technical result that Peano Arithmetic can be interpreted by second-order logic plus Hume's Principle, than empirical considerations about how numbers come about.
     From: Thomas Hofweber (Ontology and the Ambitions of Metaphysics [2016], 06.1.3)
     A reaction: This doesn't sound like a problem that would bother Fregeans or neo-Fregeans much. Deriving the Peano Axioms from various beginnings has become a parlour game for modern philosophers of mathematics.