structure for 'Theory of Logic'    |     alphabetical list of themes    |     unexpand these ideas

5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / a. Set theory paradoxes

[inconsistencies resulting from set theory axioms]

4 ideas
Set-theory paradoxes are no worse than sense deception in physics [Gödel]
     Full Idea: The set-theoretical paradoxes are hardly any more troublesome for mathematics than deceptions of the senses are for physics.
     From: Kurt Gödel (What is Cantor's Continuum Problem? [1964], p.271), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 03.4
Set theory was struggling with higher infinities, when new paradoxes made it baffling [Quine]
     Full Idea: Unlike elementary logic, the truths of set theory are not obvious. Set theory was straining at the leash of intuition ever since Cantor discovered higher infinites; and with the added impetus of the paradoxes of set theory the leash snapped.
     From: Willard Quine (Carnap and Logical Truth [1954], II)
     A reaction: This problem seems to have forced Quine into platonism about sets, because he felt they were essential for mathematics and science, but couldn't be constructed with precision. So they must be real, but we don't quite understand them.
The paradoxes no longer seem crucial in critiques of set theory [Burgess/Rosen]
     Full Idea: Recent commentators have de-emphasised the set paradoxes because they play no prominent part in motivating the most articulate and active opponents of set theory, such as Kronecker (constructivism) or Brouwer (intuitionism), or Weyl (predicativism).
     From: JP Burgess / G Rosen (A Subject with No Object [1997], III.C.1.b)
     A reaction: This seems to be a sad illustration of the way most analytical philosophers have to limp along behind the logicians and mathematicians, arguing furiously about problems that have largely been abandoned.
Paradoxes can be solved by talking more loosely of 'classes' instead of 'sets' [Friend]
     Full Idea: The realist meets the Burali-Forti paradox by saying that all the ordinals are a 'class', not a set. A proper class is what we discuss when we say "all" the so-and-sos when they cannot be reached by normal set-construction. Grammar is their only limit.
     From: Michčle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: This strategy would be useful for Class Nominalism, which tries to define properties in terms of classes, but gets tangled in paradoxes. But why bother with strict sets if easy-going classes will do just as well? Descartes's Dream: everything is rational.