structure for 'Mathematics'    |     alphabetical list of themes    |     unexpand these ideas

6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics

[mathematics is knowable directly by pure reason]

11 ideas
Kant's intuitions struggle to judge relevance, impossibility and exactness [Kitcher on Kant]
     Full Idea: Kant's intuitions have the Irrelevance problem (which structures of the mind are just accidental?), the Practical Impossibility problem (how to show impossible-in-principle?), and the Exactness problem (are entities exactly as they seem?).
     From: comment on Immanuel Kant (Critique of Pure Reason [1781]) by Philip Kitcher - The Nature of Mathematical Knowledge 03.1
     A reaction: [see Kitcher for an examination of these] Presumably the answer to all three must be that we have meta-intuitions about our intuitions, or else intuitions come with built-in criteria to deal with the three problems. We must intuit something specific.
Mathematics can only start from an a priori intuition which is not empirical but pure [Kant]
     Full Idea: We find that all mathematical knowledge has this peculiarity, that it must first exhibit its concept in intuition, and do so a priori, in an intuition that is not empirical but pure.
     From: Immanuel Kant (Prolegomena to Any Future Metaphysic [1781], 281)
     A reaction: Later thinkers had grave doubts about this Kantian 'intuition', even if they though maths was known a priori. Personally I am increasing fan of rational intuition, even if I am not sure how to discern whether it is rational on any occasion.
All necessary mathematical judgements are based on intuitions of space and time [Kant]
     Full Idea: Space and time are the two intuitions on which pure mathematics grounds all its cognitions and judgements that present themselves as at once apodictic and necessary.
     From: Immanuel Kant (Prolegomena to Any Future Metaphysic [1781], 284)
     A reaction: This unlikely proposal seems to be based on the idea that mathematics must arise from the basic categories of our intuition, and these two are the best candidates he can find. I would say that high-level generality is the basis of mathematics.
Bolzano began the elimination of intuition, by proving something which seemed obvious [Bolzano, by Dummett]
     Full Idea: Bolzano began the process of eliminating intuition from analysis, by proving something apparently obvious (that as continuous function must be zero at some point). Proof reveals on what a theorem rests, and that it is not intuition.
     From: report of Bernard Bolzano (Theory of Science (Wissenschaftslehre, 4 vols) [1837]) by Michael Dummett - Frege philosophy of mathematics Ch.6
     A reaction: Kant was the target of Bolzano's attack. Two responses might be to say that many other basic ideas are intuited but impossible to prove, or to say that proof itself depends on intuition, if you dig deep enough.
Frege's logicism aimed at removing the reliance of arithmetic on intuition [Frege, by Yourgrau]
     Full Idea: In reducing arithmetic to logic Frege was precisely trying to show the independence of this study from any peculiarly mathematical intuitions.
     From: report of Gottlob Frege (Grundlagen der Arithmetik (Foundations) [1884]) by Palle Yourgrau - Sets, Aggregates and Numbers 'Two'
Geometry appeals to intuition as the source of its axioms [Frege]
     Full Idea: The elements of all geometrical constructions are intuitions, and geometry appeals to intuition as the source of its axioms.
     From: Gottlob Frege (Rechnungsmethoden (dissertation) [1874], Ch.6), quoted by Michael Dummett - Frege philosophy of mathematics
     A reaction: Very early Frege, but he stuck to this view, while firmly rejecting intuition as a source of arithmetic. Frege would have known well that Euclid's assumption about parallels had been challenged.
If mathematics comes through intuition, that is either inexplicable, or too subjective [Kitcher]
     Full Idea: If mathematical statements are don't merely report features of transient and private mental entities, it is unclear how pure intuition generates mathematical knowledge. But if they are, they express different propositions for different people and times.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.1)
     A reaction: This seems to be the key dilemma which makes Kitcher reject intuition as an a priori route to mathematics. We do, though, just seem to 'see' truths sometimes, and are unable to explain how we do it.
Intuition is no basis for securing a priori knowledge, because it is fallible [Kitcher]
     Full Idea: The process of pure intuition does not measure up to the standards required of a priori warrants not because it is sensuous but because it is fallible.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.2)
Mathematical intuition is not the type platonism needs [Kitcher]
     Full Idea: The intuitions of which mathematicians speak are not those which Platonism requires.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.3)
     A reaction: The point is that it is not taken to be a 'special' ability, but rather a general insight arising from knowledge of mathematics. I take that to be a good account of intuition, which I define as 'inarticulate rationality'.
Intuition is an outright hindrance to five-dimensional geometry [Shapiro]
     Full Idea: Even if spatial intuition provides a little help in the heuristics of four-dimensional geometry, intuition is an outright hindrance for five-dimensional geometry and beyond.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 5.2)
     A reaction: One might respond by saying 'so much the worse for five-dimensional geometry'. One could hardly abolish the subject, though, so the point must be taken.
Intuition doesn't support much mathematics, and we should question its reliability [Maddy, by Shapiro]
     Full Idea: Maddy says that intuition alone does not support very much mathematics; more importantly, a naturalist cannot accept intuition at face value, but must ask why we are justified in relying on intuition.
     From: report of Penelope Maddy (Realism in Mathematics [1990]) by Stewart Shapiro - Thinking About Mathematics 8.3
     A reaction: It depends what you mean by 'intuition', but I identify with her second objection, that every faculty must ultimately be subject to criticism, which seems to point to a fairly rationalist view of things.