structure for 'Theory of Logic'    |     alphabetical list of themes    |     unexpand these ideas

5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models

[general features of logical models]

35 ideas
We can show that a concept is consistent by producing something which falls under it [Frege]
     Full Idea: We can only establish that a concept is free from contradiction by first producing something that falls under it.
     From: Gottlob Frege (Grundlagen der Arithmetik (Foundations) [1884], §095), quoted by Michael Potter - The Rise of Analytic Philosophy 1879-1930 19 'Exist'
     A reaction: Potter quotes this as an example of proof by modelling. If it has one model then it must be consistent. Then we ask whether all the models are or are not consistent with one another. Circular squares fail the test.
A 'model' is a sequence of objects which satisfies a complete set of sentential functions [Tarski]
     Full Idea: An arbitrary sequence of objects which satisfies every sentential function of the sentences L' will be called a 'model' or realization of the class L of sentences. There can also be a model of a single sentence is this way.
     From: Alfred Tarski (The Concept of Logical Consequence [1936], p.417)
     A reaction: [L' is L with the constants replaced by variables] Tarski is the originator of model theory, which is central to modern logic. The word 'realization' is a helpful indicator of what he has in mind. A model begins to look like a possible world.
The object language/ metalanguage distinction is the basis of model theory [Tarski, by Halbach]
     Full Idea: Tarski's distinction between object and metalanguage forms the basis of model theory.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 11
Model theory looks at valid sentences and consequence, but not how we know these things [Prawitz]
     Full Idea: In model theory, which has dominated the last decades, one concentrates on logically valid sentences, and what follows logically from what, but one disregards questions concerning how we know these things.
     From: Dag Prawitz (On the General Idea of Proof Theory [1974], §1)
Model theory studies formal or natural language-interpretation using set-theory [Hodges,W]
     Full Idea: Model theory is the study of the interpretation of any language, formal or natural, by means of set-theoretic structures, with Tarski's truth definition as a paradigm.
     From: Wilfrid Hodges (Model Theory [2005], Intro)
     A reaction: My attention is caught by the fact that natural languages are included. Might we say that science is model theory for English? That sounds like Quine's persistent message.
A 'structure' is an interpretation specifying objects and classes of quantification [Hodges,W]
     Full Idea: A 'structure' in model theory is an interpretation which explains what objects some expressions refer to, and what classes some quantifiers range over.
     From: Wilfrid Hodges (Model Theory [2005], 1)
     A reaction: He cites as examples 'first-order structures' used in mathematical model theory, and 'Kripke structures' used in model theory for modal logic. A structure is also called a 'universe'.
Models in model theory are structures, not sets of descriptions [Hodges,W]
     Full Idea: The models in model-theory are structures, but there is also a common use of 'model' to mean a formal theory which describes and explains a phenomenon, or plans to build it.
     From: Wilfrid Hodges (Model Theory [2005], 5)
     A reaction: Hodges is not at all clear here, but the idea seems to be that model-theory offers a set of objects and rules, where the common usage offers a set of descriptions. Model-theory needs homomorphisms to connect models to things,
A model is 'fundamental' if it contains only concrete entities [Jubien]
     Full Idea: A first-order model can be viewed as a kind of ordered set, and if the domain of the model contains only concrete entities then it is a 'fundamental' model.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.117)
     A reaction: An important idea. Fundamental models are where the world of logic connects with the physical world. Any account of relationship between fundamental models and more abstract ones tells us how thought links to world.
Model theory is unusual in restricting the range of the quantifiers [Field,H]
     Full Idea: In model theory we are interested in allowing a slightly unusual semantics for quantifiers: we are willing to allow that the quantifier not range over everything.
     From: Hartry Field (Tarski's Theory of Truth [1972], n 5)
Model theory studies how set theory can model sets of sentences [Hart,WD]
     Full Idea: Modern model theory investigates which set theoretic structures are models for which collections of sentences.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: So first you must choose your set theory (see Idea 13497). Then you presumably look at how to formalise sentences, and then look at the really tricky ones, many of which will involve various degrees of infinity.
Model theory is mostly confined to first-order theories [Hart,WD]
     Full Idea: There is no developed methematics of models for second-order theories, so for the most part, model theory is about models for first-order theories.
     From: William D. Hart (The Evolution of Logic [2010], 9)
Models are ways the world might be from a first-order point of view [Hart,WD]
     Full Idea: Models are ways the world might be from a first-order point of view.
     From: William D. Hart (The Evolution of Logic [2010], 9)
Modern model theory begins with the proof of Los's Conjecture in 1962 [Hart,WD]
     Full Idea: The beginning of modern model theory was when Morley proved Los's Conjecture in 1962 - that a complete theory in a countable language categorical in one uncountable cardinal is categorical in all.
     From: William D. Hart (The Evolution of Logic [2010], 9)
Semantics for models uses set-theory [Shapiro]
     Full Idea: Typically, model-theoretic semantics is formulated in set theory.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 2.5.1)
Model theory deals with relations, reference and extensions [Shapiro]
     Full Idea: Model theory determines only the relations between truth conditions, the reference of singular terms, the extensions of predicates, and the extensions of the logical terminology.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.9)
The central notion of model theory is the relation of 'satisfaction' [Shapiro]
     Full Idea: The central notion of model theory is the relation of 'satisfaction', sometimes called 'truth in a model'.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.9)
We only need to study mathematical models, since all other models are isomorphic to these [Burgess]
     Full Idea: In practice there is no need to consider any but mathematical models, models whose universes consist of mathematical objects, since every model is isomorphic to one of these.
     From: John P. Burgess (Philosophical Logic [2009], 1.8)
     A reaction: The crucial link is the technique of Gödel Numbering, which can translate any verbal formula into numerical form. He adds that, because of the Löwenheim-Skolem theorem only subsets of the natural numbers need be considered.
Models leave out meaning, and just focus on truth values [Burgess]
     Full Idea: Models generally deliberately leave out meaning, retaining only what is important for the determination of truth values.
     From: John P. Burgess (Philosophical Logic [2009], 2.2)
     A reaction: This is the key point to hang on to, if you are to avoid confusing mathematical models with models of things in the real world.
We aim to get the technical notion of truth in all models matching intuitive truth in all instances [Burgess]
     Full Idea: The aim in setting up a model theory is that the technical notion of truth in all models should agree with the intuitive notion of truth in all instances. A model is supposed to represent everything about an instance that matters for its truth.
     From: John P. Burgess (Philosophical Logic [2009], 3.2)
A structure models a sentence if it is true in the model, and a set of sentences if they are all true in the model [Zalabardo]
     Full Idea: A structure is a model of a sentence if the sentence is true in the model; a structure is a model of a set of sentences if they are all true in the structure.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.6)
In model theory, first define truth, then validity as truth in all models, and consequence as truth-preservation [Sider]
     Full Idea: In model theory one normally defines some notion of truth in a model, and then uses it to define validity as truth in all models, and semantic consequence as the preservation of truth in models.
     From: Theodore Sider (Logic for Philosophy [2010], 10.1)
A 'model' is a meaning-assignment which makes all the axioms true [George/Velleman]
     Full Idea: A 'model' of a theory is an assignment of meanings to the symbols of its language which makes all of its axioms come out true.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
     A reaction: If the axioms are all true, and the theory is sound, then all of the theorems will also come out true.
If every model that makes premises true also makes conclusion true, the argument is valid [Melia]
     Full Idea: In first-order predicate calculus validity is defined thus: an argument is valid iff every model that makes the premises of the argument true also makes the conclusion of the argument true.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: See Melia Ch. 2 for an explanation of a 'model'. Traditional views of validity tend to say that if the premises are true the conclusion has to be true (necessarily), but this introduces the modal term 'necessarily', which is controversial.
Sentence logic maps truth values; predicate logic maps objects and sets [Merricks]
     Full Idea: The models for sentential logic map sentences to truth-values. The models for predicate logic map parts of sentences to objects and sets.
     From: Trenton Merricks (Propositions [2015], 2.II)
     A reaction: Logic books rarely tell you important things like this. That is why this database is so incredibly important! You will never understand the subject if you don't collect together the illuminating asides of discussion. They say it all so much more simply.
A structure is a 'model' when the axioms are true. So which of the structures are models? [Feferman/Feferman]
     Full Idea: A structure is said to be a 'model' of an axiom system if each of its axioms is true in the structure (e.g. Euclidean or non-Euclidean geometry). 'Model theory' concerns which structures are models of a given language and axiom system.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
     A reaction: This strikes me as the most interesting aspect of mathematical logic, since it concerns the ways in which syntactic proof-systems actually connect with reality. Tarski is the central theoretician here, and his theory of truth is the key.
Tarski and Vaught established the equivalence relations between first-order structures [Feferman/Feferman]
     Full Idea: In the late 1950s Tarski and Vaught defined and established basic properties of the relation of elementary equivalence between two structures, which holds when they make true exactly the same first-order sentences. This is fundamental to model theory.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
     A reaction: This is isomorphism, which clarifies what a model is by giving identity conditions between two models. Note that it is 'first-order', and presumably founded on classical logic.
Models are mathematical structures which interpret the non-logical primitives [Beall/Restall]
     Full Idea: Models are abstract mathematical structures that provide possible interpretations for each of the non-logical primitives in a formal language.
     From: JC Beall / G Restall (Logical Consequence [2005], 3)
Model theory uses sets to show that mathematical deduction fits mathematical truth [Wolf,RS]
     Full Idea: Model theory uses set theory to show that the theorem-proving power of the usual methods of deduction in mathematics corresponds perfectly to what must be true in actual mathematical structures.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], Pref)
     A reaction: That more or less says that model theory demonstrates the 'soundness' of mathematics (though normal arithmetic is famously not 'complete'). Of course, he says they 'correspond' to the truths, rather than entailing them.
Model theory reveals the structures of mathematics [Wolf,RS]
     Full Idea: Model theory helps one to understand what it takes to specify a mathematical structure uniquely.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.1)
     A reaction: Thus it is the development of model theory which has led to the 'structuralist' view of mathematics.
Model theory 'structures' have a 'universe', some 'relations', some 'functions', and some 'constants' [Wolf,RS]
     Full Idea: A 'structure' in model theory has a non-empty set, the 'universe', as domain of variables, a subset for each 'relation', some 'functions', and 'constants'.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.2)
First-order model theory rests on completeness, compactness, and the Löwenheim-Skolem-Tarski theorem [Wolf,RS]
     Full Idea: The three foundations of first-order model theory are the Completeness theorem, the Compactness theorem, and the Löwenheim-Skolem-Tarski theorem.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)
     A reaction: On p.180 he notes that Compactness and LST make no mention of |- and are purely semantic, where Completeness shows the equivalence of |- and |=. All three fail for second-order logic (p.223).
Permutation Theorem: any theory with a decent model has lots of models [Button]
     Full Idea: The Permutation Theorem says that any theory with a non-trivial model has many distinct isomorphic models with the same domain.
     From: Tim Button (The Limits of Reason [2013], 02.1)
     A reaction: This may be the most significant claim of model theory, since Putnam has erected an argument for anti-realism on it. See the ideas of Tim Button.
A model is a domain, and an interpretation assigning objects, predicates, relations etc. [Rossberg]
     Full Idea: A standard model is a set of objects called the 'domain', and an interpretation function, assigning objects in the domain to names, subsets to predicate letters, subsets of the Cartesian product of the domain with itself to binary relation symbols etc.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: The model actually specifies which objects have which predicates, and which objects are in which relations. Tarski's account of truth in terms of 'satisfaction' seems to be just a description of those pre-decided facts.
Models are sets with functions and relations, and truth built up from the components [Horsten/Pettigrew]
     Full Idea: A (logical) model is a set with functions and relations defined on it that specify the denotation of the non-logical vocabulary. A series of recursive clauses explicate how truth values of complex sentences are compositionally determined from the parts.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 3)
     A reaction: See the ideas on 'Functions in logic' and 'Relations in logic' (in the alphabetical list) to expand this important idea.
A 'model' of a theory specifies interpreting a language in a domain to make all theorems true [Walicki]
     Full Idea: A specification of a domain of objects, and of the rules for interpreting the symbols of a logical language in this domain such that all the theorems of the logical theory are true is said to be a 'model' of the theory.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.1.3)
     A reaction: The basic ideas of this emerged 1915-30, but it needed Tarski's account of truth to really get it going.