structure for 'Theory of Logic'    |     alphabetical list of themes    |     unexpand these ideas

5. Theory of Logic / K. Features of Logics / 8. Enumerability

[whether all formulae in a system can be specified]

10 ideas
There are infinite sets that are not enumerable [Cantor, by Smith,P]
     Full Idea: Cantor's Theorem (1874) says there are infinite sets that are not enumerable. This is proved by his 1891 'diagonal argument'.
     From: report of George Cantor (works [1880]) by Peter Smith - Intro to Gödel's Theorems 2.3
     A reaction: [Smith summarises the diagonal argument]
A logical system needs a syntactical survey of all possible expressions [Gödel]
     Full Idea: In order to be sure that new expression can be translated into expressions not containing them, it is necessary to have a survey of all possible expressions, and this can be furnished only by syntactical considerations.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.448)
     A reaction: [compressed]
For a reasonable language, the set of valid wff's can always be enumerated [Enderton]
     Full Idea: The Enumerability Theorem says that for a reasonable language, the set of valid wff's can be effectively enumerated.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 2.5)
     A reaction: There are criteria for what makes a 'reasonable' language (probably specified to ensure enumerability!). Predicates and functions must be decidable, and the language must be finite.
Effective enumeration might be proved but not specified, so it won't guarantee knowledge [Tharp]
     Full Idea: Despite completeness, the mere existence of an effective enumeration of the valid formulas will not, by itself, provide knowledge. For example, one might be able to prove that there is an effective enumeration, without being able to specify one.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
     A reaction: The point is that completeness is supposed to ensure knowledge (of what is valid but unprovable), and completeness entails effective enumerability, but more than the latter is needed to do the key job.
A complete logic has an effective enumeration of the valid formulas [Tharp]
     Full Idea: A complete logic has an effective enumeration of the valid formulas.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
A set is 'enumerable' is all of its elements can result from a natural number function [Smith,P]
     Full Idea: A set is 'enumerable' iff either the set is empty, or there is a surjective function to the set from the set of natural numbers, so that the set is in the range of that function.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.3)
A set is 'effectively enumerable' if a computer could eventually list every member [Smith,P]
     Full Idea: A set is 'effectively enumerable' if an (idealised) computer could be programmed to generate a list of its members such that any member will eventually be mentioned (even if the list is empty, or without end, or contains repetitions).
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.4)
A finite set of finitely specifiable objects is always effectively enumerable (e.g. primes) [Smith,P]
     Full Idea: A finite set of finitely specifiable objects is always effectively enumerable (for example, the prime numbers).
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.4)
The set of ordered pairs of natural numbers <i,j> is effectively enumerable [Smith,P]
     Full Idea: The set of ordered pairs of natural numbers (i,j) is effectively enumerable, as proven by listing them in an array (across: <0,0>, <0,1>, <0,2> ..., and down: <0,0>, <1,0>, <2,0>...), and then zig-zagging.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.5)
The thorems of a nice arithmetic can be enumerated, but not the truths (so they're diffferent) [Smith,P]
     Full Idea: The theorems of any properly axiomatized theory can be effectively enumerated. However, the truths of any sufficiently expressive arithmetic can't be effectively enumerated. Hence the theorems and truths of arithmetic cannot be the same.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 05 Intro)