structure for 'Formal Logic'    |     alphabetical list of themes    |     unexpand these ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility

[outdated axiom saying functions reduce to basics]

10 ideas
Reducibility: a family of functions is equivalent to a single type of function [Russell]
     Full Idea: The Axiom of Reducibility says 'There is a type of a-functions such that, given any a-function, it is formally equivalent to some function of the type in question'. ..It involves all that is really essential in the theory of classes. But is it true?
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVII)
     A reaction: I take this to say that in the theory of types, it is possible to reduce each level of type down to one type.
Russell saw Reducibility as legitimate for reducing classes to logic [Linsky,B on Russell/Whitehead]
     Full Idea: The axiom of Reducibility ...is crucial in the reduction of classes to logic, ...and seems to be a quite legitimate logical notion for Russell.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by Bernard Linsky - Russell's Metaphysical Logic 6.4
     A reaction: This is an unusual defence of the axiom, which is usually presumed to have been kicked into the long grass by Quine. If one could reduce classes to logic, that would destroy the opposition to logicism in a single neat coup.
Axiom of Reducibility: there is always a function of the lowest possible order in a given level [Russell, by Bostock]
     Full Idea: Russell's Axiom of Reducibility states that to any propositional function of any order in a given level, there corresponds another which is of the lowest possible order in the level. There corresponds what he calls a 'predicative' function of that level.
     From: report of Bertrand Russell (Substitutional Classes and Relations [1906]) by David Bostock - Philosophy of Mathematics 8.2
Reducibility: to every non-elementary function there is an equivalent elementary function [Ramsey]
     Full Idea: The Axiom of Reducibility asserted that to every non-elementary function there is an equivalent elementary function [note: two functions are equivalent when the same arguments render them both true or both false].
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §2)
     A reaction: Ramsey in the business of showing that this axiom from Russell and Whitehead is not needed. He says that the axiom seems to be needed for induction and for Dedekind cuts. Since the cuts rest on it, and it is weak, Ramsey says it must go.
In simple type theory the axiom of Separation is better than Reducibility [Gödel, by Linsky,B]
     Full Idea: In the superior realist and simple theory of types, the place of the axiom of reducibility is not taken by the axiom of classes, Zermelo's Aussonderungsaxiom.
     From: report of Kurt Gödel (Russell's Mathematical Logic [1944], p.140-1) by Bernard Linsky - Russell's Metaphysical Logic 6.1 n3
     A reaction: This is Zermelo's Axiom of Separation, but that too is not an axiom of standard ZFC.
The Axiom of Reducibility is self-effacing: if true, it isn't needed [Quine]
     Full Idea: The Axiom of Reducibility is self-effacing: if it is true, the ramification it is meant to cope with was pointless to begin with.
     From: Willard Quine (Introduction to Russell's Theory of Types [1967], p.152), quoted by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: Maddy says the rejection of Reducibility collapsed the ramified theory of types into the simple theory.
Reducibility undermines type ramification, and is committed to the existence of functions [Quine, by Linsky,B]
     Full Idea: Quine charges that the axiom of Reducibility both undoes the effect of the ramification, and commits the theory to a platonist view of propositional functions (which is a theory of sets, once use/mention confusions are cleared up).
     From: report of Willard Quine (Set Theory and its Logic [1963], p.249-58) by Bernard Linsky - Russell's Metaphysical Logic 6.1
Axiom of Reducibility: propositional functions are extensionally predicative [Maddy]
     Full Idea: The Axiom of Reducibility states that every propositional function is extensionally equivalent to some predicative proposition function.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
Reducibility says any impredicative function has an appropriate predicative replacement [Linsky,B]
     Full Idea: The Axiom of Reducibility avoids impredicativity, by asserting that for any predicate of given arguments defined by quantifying over higher-order functions or classes, there is another co-extensive but predicative function of the same type of arguments.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 1)
     A reaction: Eventually the axiom seemed too arbitrary, and was dropped. Linsky's book explores it.
The Axiom of Reducibility made impredicative definitions possible [George/Velleman]
     Full Idea: The Axiom of Reducibility ...had the effect of making impredicative definitions possible.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)