structure for 'Mathematics'    |     alphabetical list of themes    |     unexpand these ideas

6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism

[reasons for doubting the existence of maths entities]

21 ideas
Aristotle removes ontology from mathematics, and replaces the true with the beautiful [Aristotle, by Badiou]
     Full Idea: For Aristotle, the de-ontologization of mathematics draws the beautiful into the place of the true.
     From: report of Aristotle (Metaphysics [c.324 BCE]) by Alain Badiou - Briefings on Existence 14
Mathematics is just about ideas, so whether circles exist is irrelevant [Locke]
     Full Idea: All the discourses of mathematicians concerning conic sections etc. concern not the existence of any of those figures, but their demonstrations, which depend on their ideas, are the same, whether there be any square or circle existing in the world or no.
     From: John Locke (Essay Conc Human Understanding (2nd Ed) [1694], 4.04.08)
     A reaction: If the full-blown platonic circle really existed, we would have the epistemic problem not only of getting in causal contact with it, but also of knowing whether our idea of it was the correct idea. We can't know that, so we just work with our idea.
Mathematics doesn't care whether its entities exist [Russell]
     Full Idea: Mathematics is throughout indifferent to the question whether its entities exist.
     From: Bertrand Russell (The Principles of Mathematics [1903], §434)
     A reaction: There is an 'if-thenist' attitude in this book, since he is trying to reduce mathematics to logic. Total indifference leaves the problem of why mathematics is applicable to the real world.
Mathematician want performable operations, not propositions about objects [Skolem]
     Full Idea: Most mathematicians want mathematics to deal, ultimately, with performable computing operations, and not to consist of formal propositions about objects called this or that.
     From: Thoralf Skolem (Remarks on axiomatised set theory [1922], p.300)
How can you contemplate Platonic entities without causal transactions with them? [Putnam]
     Full Idea: Platonism has the attendant problem of how we can succeed in thinking about and referring to entities we can have no causal transactions with.
     From: Hilary Putnam (Phil of Mathematics: why nothing works [1979], Modalism)
Realists have semantics without epistemology, anti-realists epistemology but bad semantics [Benacerraf, by Colyvan]
     Full Idea: Benacerraf argues that realists about mathematical objects have a nice normal semantic but no epistemology, and anti-realists have a good epistemology but an unorthodox semantics.
     From: report of Paul Benacerraf (Mathematical Truth [1973]) by Mark Colyvan - Introduction to the Philosophy of Mathematics 1.2
The platonist view of mathematics doesn't fit our epistemology very well [Benacerraf]
     Full Idea: The principle defect of the standard (platonist) account of mathematical truth is that it appears to violate the requirement that our account be susceptible to integration into our over-all account of knowledge.
     From: Paul Benacerraf (Mathematical Truth [1973], III)
     A reaction: Unfortunately he goes on to defend a causal theory of justification (fashionable at that time, but implausible now). Nevertheless, his general point is well made. Your theory of what mathematics is had better make it knowable.
Number-as-objects works wholesale, but fails utterly object by object [Benacerraf]
     Full Idea: The identification of numbers with objects works wholesale but fails utterly object by object.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: This seems to be a glaring problem for platonists. You can stare at 1728 till you are blue in the face, but it only begins to have any properties at all once you examine its place in the system. This is unusual behaviour for an object.
'Real' maths objects have no causal role, no determinate reference, and no abstract/concrete distinction [Katz]
     Full Idea: Three objections to realism in philosophy of mathematics: mathematical objects have no space/time location, and so no causal role; that such objects are determinate, but reference to numbers aren't; and that there is no abstract/concrete distinction.
     From: Jerrold J. Katz (Realistic Rationalism [2000], Int.xxix)
How can pure abstract entities give models to serve as interpretations? [Jubien]
     Full Idea: I am unable to see how the mere existence of pure abstract entities enables us to concoct appropriate models to serve as interpretations.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.111)
     A reaction: Nice question. It is always assumed that once we have platonic realm, that everything else follows. Even if we are able to grasp the objects, despite their causal inertness, we still have to discern innumerable relations between them.
If we all intuited mathematical objects, platonism would be agreed [Jubien]
     Full Idea: If the intuition of mathematical objects were general, there would be no real debate over platonism.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.111)
     A reaction: It is particularly perplexing when Gödel says that his perception of them is just like sight or smell, since I have no such perception. How do you individuate very large numbers, or irrational numbers, apart from writing down numerals?
Since mathematical objects are essentially relational, they can't be picked out on their own [Jubien]
     Full Idea: The essential properties of mathematical entities seem to be relational, ...so we make no progress unless we can pick out some mathematical entities wihout presupposing other entities already picked out.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.112)
     A reaction: [compressed] Jubien is a good critic of platonism. He has identified the problem with Frege's metaphor of a 'borehole', where we discover delightful new properties of numbers simply by reaching them.
It is plausible that x^2 = -1 had no solutions before complex numbers were 'introduced' [Fine,K]
     Full Idea: It is not implausible that before the 'introduction' of complex numbers, it would have been incorrect for mathematicians to claim that there was a solution to the equation 'x^2 = -1' under a completely unrestricted understanding of 'there are'.
     From: Kit Fine (The Question of Ontology [2009])
     A reaction: I have adopted this as the crucial test question for anyone's attitude to platonism in mathematics. I take it as obvious that complex numbers were simply invented so that such equations could be dealt with. They weren't 'discovered'!
If mathematical objects exist, how can we know them, and which objects are they? [Maddy]
     Full Idea: The popular challenges to platonism in philosophy of mathematics are epistemological (how are we able to interact with these objects in appropriate ways) and ontological (if numbers are sets, which sets are they).
     From: Penelope Maddy (Sets and Numbers [1981], I)
     A reaction: These objections refer to Benacerraf's two famous papers - 1965 for the ontology, and 1973 for the epistemology. Though he relied too much on causal accounts of knowledge in 1973, I'm with him all the way.
Number words became nouns around the time of Plato [Burgess/Rosen]
     Full Idea: The transition from using number words purely as adjectives to using them extensively as nouns has been traced to 'around the time of Plato'.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], III.C.2.a)
     A reaction: [The cite Kneale and Kneale VI,§2 for this] It is just too tempting to think that in fact Plato (and early Platonists) were totally responsible for this shift, since the whole reification of numbers seems to be inherently platonist.
Does the existence of numbers matter, in the way space, time and persons do? [Lowe]
     Full Idea: Does it really matter whether the numbers actually exist - in anything like the way in which it matters that space and time or persons actually exist?
     From: E.J. Lowe (The Possibility of Metaphysics [1998], 10.6)
     A reaction: Nice question! It might matter a lot. I take the question of numbers to be a key test case, popular with philosophers because they are the simplest and commonest candidates for abstract existence. The ontological status of values is the real issue.
Children can use numbers, without a concept of them as countable objects [Heck]
     Full Idea: For a long time my daughter had no understanding of the question of how many numerals or numbers there are between 'one' and 'five'. I think she lacked the concept of numerals as objects which can themselves be counted.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: I can't make any sense of numbers actually being objects, though clearly treating all sorts of things as objects helps thinking (as in 'the victory is all that matters').
Talk of 'abstract entities' is more a label for the problem than a solution to it [George/Velleman]
     Full Idea: One might well wonder whether talk of abstract entities is less a solution to the empiricist's problem of how a priori knowledge is possible than it is a label for the problem.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Intro)
     A reaction: This pinpoints my view nicely. What the platonist postulates is remote, bewildering, implausible and useless!
Arithmetic is not about a domain of entities, as the quantifiers are purely inferential [Hofweber]
     Full Idea: I argue for an internalist conception of arithmetic. Arithmetic is not about a domain of entities, not even quantified entities. Quantifiers over natural numbers occur in their inferential-role reading in which they merely generalize over the instances.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §6.3)
     A reaction: Hofweber offers the hope that modern semantics can disentangle the confusions in platonist arithmetic. Very interesting. The fear is that after digging into the semantics for twenty years, you find the same old problems re-emerging at a lower level.
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
     Full Idea: In modern mathematics virtually all work is only up to isomorphism and no one cares what the numbers or points and lines 'really are'.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
     A reaction: At least that leaves the field open for philosophers, because we do care what things really are. So should everybody else, but there is no persuading some people.
The big problem for platonists is epistemic: how do we perceive, intuit, know or detect mathematical facts? [Friend]
     Full Idea: The main philosophical problem with the position of platonism or realism is the epistemic problem: of explaining what perception or intuition consists in; how it is possible that we should accurately detect whatever it is we are realists about.
     From: Michčle Friend (Introducing the Philosophy of Mathematics [2007], 2.5)
     A reaction: The best bet, I suppose, is that the mind directly perceives concepts just as eyes perceive the physical (see Idea 8679), but it strikes me as implausible. If we have to come up with a special mental faculty for an area of knowledge, we are in trouble.