structure for 'Formal Logic'    |     alphabetical list of themes    |     unexpand these ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory

[general ideas concerning the theory of sets]

30 ideas
An aggregate in which order does not matter I call a 'set' [Bolzano]
     Full Idea: An aggregate whose basic conception renders the arrangement of its members a matter of indifference, and whose permutation therefore produces no essential difference, I call a 'set'.
     From: Bernard Bolzano (Paradoxes of the Infinite [1846], §4), quoted by William W. Tait - Frege versus Cantor and Dedekind IX
     A reaction: The idea of 'sets' was emerging before Cantor formalised it, and clarified it by thinking about infinite sets. Nowadays we also have 'ordered' sets, which rather contradicts Bolzano, and we also expect the cardinality to be determinate.
Cantor developed sets from a progression into infinity by addition, multiplication and exponentiation [Cantor, by Lavine]
     Full Idea: Cantor's development of set theory began with his discovery of the progression 0, 1, ....∞, ∞+1, ∞+2, ..∞x2, ∞x3, ...∞^2, ..∞^3, ...∞^∞, ...∞^∞^∞.....
     From: report of George Cantor (Grundlagen (Foundations of Theory of Manifolds) [1883]) by Shaughan Lavine - Understanding the Infinite VIII.2
A set is a collection into a whole of distinct objects of our intuition or thought [Cantor]
     Full Idea: A set is any collection into a whole M of definite, distinct objects m ... of our intuition or thought.
     From: George Cantor (The Theory of Transfinite Numbers [1897], p.85), quoted by James Robert Brown - Philosophy of Mathematics Ch.2
     A reaction: This is the original conception of a set, which hit trouble with Russell's Paradox. Cantor's original definition immediately invites thoughts about the status of vague objects.
Trying to represent curves, we study arbitrary functions, leading to the ordinals, which produces set theory [Cantor, by Lavine]
     Full Idea: The notion of a function evolved gradually from wanting to see what curves can be represented as trigonometric series. The study of arbitrary functions led Cantor to the ordinal numbers, which led to set theory.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
Frege did not think of himself as working with sets [Frege, by Hart,WD]
     Full Idea: Frege did not think of himself as working with sets.
     From: report of Gottlob Frege (works [1890]) by William D. Hart - The Evolution of Logic 1
     A reaction: One can hardly blame him, given that set theory was only just being invented.
We take set theory as given, and retain everything valuable, while avoiding contradictions [Zermelo]
     Full Idea: Starting from set theory as it is historically given ...we must, on the one hand, restrict these principles sufficiently to exclude as contradiction and, on the other, take them sufficiently wide to retain all that is valuable in this theory.
     From: Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908], Intro)
     A reaction: Maddy calls this the one-step-back-from-disaster rule of thumb. Zermelo explicitly mentions the 'Russell antinomy' that blocked Frege's approach to sets.
Set theory investigates number, order and function, showing logical foundations for mathematics [Zermelo]
     Full Idea: Set theory is that branch whose task is to investigate mathematically the fundamental notions 'number', 'order', and 'function', taking them in their pristine, simple form, and to develop thereby the logical foundations of all of arithmetic and analysis.
     From: Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908], Intro)
     A reaction: At this point Zermelo seems to be a logicist. Right from the start set theory was meant to be foundational to mathematics, and not just a study of the logic of collections.
Set theory is full of Platonist metaphysics, so Quine aimed to keep it separate from logic [Quine, by Benardete,JA]
     Full Idea: Quine has showed us how set theory - now recognised to be positively awash in Platonistic metaphysics - can and should be prevented from infecting logic proper.
     From: report of Willard Quine (works [1961]) by José A. Benardete - Metaphysics: the logical approach Intro
The set theory brackets { } assert that the member is a unit [Armstrong]
     Full Idea: The idea is that braces { } attribute to an entity the place-holding, or perhaps determinable, property of unithood.
     From: David M. Armstrong (Truth and Truthmakers [2004], 09.5)
     A reaction: I like this. There is Socrates himself, then there is my concept , and then there is the singleton {Socrates}. Those braces must add something to the concept. You can't add braces to Socrates himself.
The logic of ZF is classical first-order predicate logic with identity [Boolos]
     Full Idea: The logic of ZF Set Theory is classical first-order predicate logic with identity.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.121)
     A reaction: This logic seems to be unable to deal with very large cardinals, precisely those that are implied by set theory, so there is some sort of major problem hovering here. Boolos is fairly neutral.
There is no single agreed structure for set theory [Bostock]
     Full Idea: There is so far no agreed set of axioms for set theory which is categorical, i.e. which does pick just one structure.
     From: David Bostock (Philosophy of Mathematics [2009], 6.4)
     A reaction: This contrasts with Peano Arithmetic, which is categorical in its second-order version.
Mathematics reduces to set theory, which reduces, with some mereology, to the singleton function [Lewis]
     Full Idea: It is generally accepted that mathematics reduces to set theory, and I argue that set theory in turn reduces, with some aid of mereology, to the theory of the singleton function.
     From: David Lewis (Mathematics is Megethology [1993], p.03)
Sets are mereological sums of the singletons of their members [Lewis, by Armstrong]
     Full Idea: Lewis pointed out that many-membered classes are nothing more than the mereological wholes of the classes formed by taking the singleton of each member.
     From: report of David Lewis (Parts of Classes [1991]) by David M. Armstrong - Truth and Truthmakers 09.4
     A reaction: You can't combine members to make the class, because the whole and the parts are of different type, but here the parts and whole are both sets, so they combine like waterdrops.
We can build set theory on singletons: classes are then fusions of subclasses, membership is the singleton [Lewis]
     Full Idea: The notion of a singleton, or unit set, can serve as the distinctive primitive of set theory. The rest is mereology: a class is the fusion of its singleton subclasses, something is a member of a class iff its singleton is part of that class.
     From: David Lewis (Parts of Classes [1991], Pref)
     A reaction: This is a gloriously bold proposal which I immediately like, because it cuts out the baffling empty set (which many people think 'exists'!), and gets mathematics back to being about the real world of entities (as the Greeks thought).
Set theory attempts to reduce the 'is' of predication to mathematics [Benardete,JA]
     Full Idea: Set theory offers the promise of a complete mathematization of the 'is' of predication.
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.13)
The set of Greeks is included in the set of men, but isn't a member of it [Benardete,JA]
     Full Idea: Set inclusion is sharply distinguished from set membership (as the set of Greeks is found to be included in, but not a member of, the set of men).
     From: José A. Benardete (Metaphysics: the logical approach [1989], Ch.13)
'Impure' sets have a concrete member, while 'pure' (abstract) sets do not [Jubien]
     Full Idea: Any set with a concrete member is 'impure'. 'Pure' sets are those that are not impure, and are paradigm cases of abstract entities, such as the sort of sets apparently dealt with in Zermelo-Fraenkel (ZF) set theory.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.116)
     A reaction: [I am unclear whether Jubien is introducing this distinction] This seems crucial in accounts of mathematics. On the one had arithmetic can be built from Millian pebbles, giving impure sets, while logicists build it from pure sets.
Set theory articulates the concept of order (through relations) [Hart,WD]
     Full Idea: It is set theory, and more specifically the theory of relations, that articulates order.
     From: William D. Hart (The Evolution of Logic [2010])
     A reaction: It would seem that we mainly need set theory in order to talk accurately about order, and about infinity. The two come together in the study of the ordinal numbers.
Nowadays ZFC and NBG are the set theories; types are dead, and NF is only useful for the whole universe [Hart,WD]
     Full Idea: The theory of types is a thing of the past. There is now nothing to choose between ZFC and NBG (Neumann-Bernays-Gödel). NF (Quine's) is a more specialized taste, but is a place to look if you want the universe.
     From: William D. Hart (The Evolution of Logic [2010], 3)
A set is a 'number of things', not a 'collection', because nothing actually collects the members [Lowe]
     Full Idea: A set is 'a number of things', not a 'collection'. Nothing literally 'collects' the members of a set, such as the set of planets of the sun, unless it be a Fregean 'concept' under which they fall.
     From: E.J. Lowe (The Possibility of Metaphysics [1998], 10.6)
     A reaction: I'm tempted to say that the sun has collected a set of planets (they're the ones that rotate around it). Why can't we have natural sets, which have been collected by nature? A question of the intension, as well as the extension....
Sets can be defined by 'enumeration', or by 'abstraction' (based on a property) [Zalabardo]
     Full Idea: We can define a set by 'enumeration' (by listing the items, within curly brackets), or by 'abstraction' (by specifying the elements as instances of a property), pretending that they form a determinate totality. The latter is written {x | x is P}.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.3)
Unlike elementary logic, set theory is not complete [Orenstein]
     Full Idea: The incompleteness of set theory contrasts sharply with the completeness of elementary logic.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: This seems to be Quine's reason for abandoning the Frege-Russell logicist programme (quite apart from the problems raised by Gödel.
Set theory's three roles: taming the infinite, subject-matter of mathematics, and modes of reasoning [Potter]
     Full Idea: Set theory has three roles: as a means of taming the infinite, as a supplier of the subject-matter of mathematics, and as a source of its modes of reasoning.
     From: Michael Potter (Set Theory and Its Philosophy [2004], Intro 1)
     A reaction: These all seem to be connected with mathematics, but there is also ontological interest in set theory. Potter emphasises that his second role does not entail a commitment to sets 'being' numbers.
The two best understood conceptions of set are the Iterative and the Limitation of Size [Rayo/Uzquiano]
     Full Idea: The two best understood conceptions of set are the Iterative Conception and the Limitation of Size Conception.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.2.2)
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
     Full Idea: Second-order set theory is just like first-order set-theory, except that we use the version of Replacement with a universal second-order quantifier over functions from set to sets.
     From: Shaughan Lavine (Understanding the Infinite [1994], VII.4)
Every attempt at formal rigour uses some set theory [Halbach]
     Full Idea: Almost any subject with any formal rigour employs some set theory.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 4.1)
     A reaction: This is partly because mathematics is often seen as founded in set theory, and formal rigour tends to be mathematical in character.
To prove the consistency of set theory, we must go beyond set theory [Halbach]
     Full Idea: The consistency of set theory cannot be established without assumptions transcending set theory.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 2.1)
Most set theorists doubt bivalence for the Continuum Hypothesis, but still use classical logic [Rumfitt]
     Full Idea: Many set theorists doubt if the Generalised Continuum Hypothesis must be either true or false; certainly, its bivalence is far from obvious. All the same, almost all set theorists use classical logic in their proofs.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 7.2)
     A reaction: His point is that classical logic is usually taken to rest on bivalence. He offers the set theorists a helping hand, by defending classical logic without resorting to bivalence.